题名 | Unit-Modulus Wireless Federated Learning Via Penalty Alternating Minimization |
作者 | |
DOI | |
发表日期 | 2021
|
会议名称 | IEEE Global Communications Conference (GLOBECOM)
|
ISSN | 2334-0983
|
EISSN | 2576-6813
|
ISBN | 978-1-7281-8105-9
|
会议录名称 | |
页码 | 1-7
|
会议日期 | DEC 07-11, 2021
|
会议地点 | null,Madrid,SPAIN
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Wireless federated learning (FL) is an emerging machine learning paradigm that trains a global parametric model from distributed datasets via wireless communications. This paper proposes a unit-modulus wireless FL (UMWFL) framework, which simultaneously uploads local model parameters and computes global model parameters via optimized phase shifting. The proposed framework avoids sophisticated baseband signal processing, leading to both low communication delays and implementation costs. A training loss bound is derived and a penalty alternating minimization (PAM) algorithm is proposed to minimize the nonconvex nonsmooth loss bound. Experimental results in the Car Learning to Act (CARLA) platform show that the proposed UMWFL framework with PAM algorithm achieves smaller training losses and testing errors than those of the benchmark scheme. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[62001203];
|
WOS研究方向 | Computer Science
; Engineering
; Telecommunications
|
WOS类目 | Computer Science, Information Systems
; Computer Science, Theory & Methods
; Engineering, Electrical & Electronic
; Telecommunications
|
WOS记录号 | WOS:000790747204026
|
EI入藏号 | 20221311872695
|
EI主题词 | Pulse amplitude modulation
|
Scopus记录号 | 2-s2.0-85120959887
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9685788 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/329070 |
专题 | 工学院_电子与电气工程系 工学院_计算机科学与工程系 |
作者单位 | 1.Southern University of Science and Technology,Department of Electrical and Electronic Engineering,China 2.Southern University of Science and Technology,Department of Computer Science and Engineering,China 3.University of Hong Kong,Department of Electrical and Electronic Engineering,Hong Kong,Hong Kong 4.School of Electrical Engineering and Telecommunications,University of New South Wales,Australia |
第一作者单位 | 电子与电气工程系; 计算机科学与工程系 |
第一作者的第一单位 | 电子与电气工程系 |
推荐引用方式 GB/T 7714 |
Wang,Shuai,Li,Dachuan,Wang,Rui,et al. Unit-Modulus Wireless Federated Learning Via Penalty Alternating Minimization[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:1-7.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论