中文版 | English
题名

Local equivalence problem in hidden Markov model

作者
通讯作者Hayashi,Masahito
发表日期
2019-06-01
DOI
发表期刊
ISSN
2511-2481
EISSN
2511-249X
卷号2期号:1
摘要
In the hidden Markov process, there is a possibility that two different transition matrices for hidden and observed variables yield the same stochastic behavior for the observed variables. Since such two transition matrices cannot be distinguished, we need to identify them and consider that they are equivalent, in practice. We address the equivalence problem of hidden Markov process in a local neighborhood by using the geometrical structure of hidden Markov process. For this aim, we introduce a mathematical concept to express Markov process, and formulate its exponential family by using generators. Then, the above equivalence problem is formulated as the equivalence problem of generators. Taking this equivalence problem into account, we derive several concrete parametrizations in several natural cases.
关键词
相关链接[Scopus记录]
语种
英语
学校署名
通讯
Scopus记录号
2-s2.0-85104109541
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/329072
专题量子科学与工程研究院
作者单位
1.The Graduate School of Mathematics,Nagoya University,Nagoya,Japan
2.Center for Advanced Intelligence Project,RIKEN,Wako,Japan
3.Shenzhen Institute for Quantum Science and Engineering,Southern University of Science and Technology,Shenzhen,China
4.The Centre for Quantum Technologies,National University of Singapore,Singapore,Singapore
第一作者单位量子科学与工程研究院
通讯作者单位量子科学与工程研究院
推荐引用方式
GB/T 7714
Hayashi,Masahito. Local equivalence problem in hidden Markov model[J]. Information Geometry,2019,2(1).
APA
Hayashi,Masahito.(2019).Local equivalence problem in hidden Markov model.Information Geometry,2(1).
MLA
Hayashi,Masahito."Local equivalence problem in hidden Markov model".Information Geometry 2.1(2019).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Hayashi,Masahito]的文章
百度学术
百度学术中相似的文章
[Hayashi,Masahito]的文章
必应学术
必应学术中相似的文章
[Hayashi,Masahito]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。