中文版 | English
题名

A convolutional neural network-based COVID-19 detection method using chest CT images

作者
通讯作者Wang, Lifei; Liu, Jikui
发表日期
2022-03-01
DOI
发表期刊
ISSN
2305-5839
EISSN
2305-5847
摘要
Background: High-throughput population screening for the novel coronavirus disease (COVID-19) is critical to controlling disease transmission. Convolutional neural networks (CNNs) are a cutting-edge technology in the field of computer vision and may prove more effective than humans in medical diagnosis based on computed tomography (CT) images. Chest CT images can show pulmonary abnormalities in patients with COVID-19. Methods: In this study, CT image preprocessing are firstly performed using fuzzy c-means (FCM) algorithm to extracted the region of the pulmonary parenchyma. Through multiscale transformation, the preprocessed image is subjected to multi scale transformation and RGB (red, green, blue) space construction. After then, the performances of GoogLeNet and ResNet, as the most advanced CNN architectures, were compared in COVID-19 detection. In addition, transfer learning (TL) was employed to solve overfitting problems caused by limited CT samples. Finally, the performance of the models were evaluated and compared using the accuracy, recall rate, and F1 score. Results: Our results showed that the ResNet-50 method based on TL (ResNet-50-TL) obtained the highest diagnostic accuracy, with a rate of 82.7% and a recall rate of 79.1% for COVID-19. These results showed that applying deep learning technology to COVID-19 screening based on chest CT images is a very promising approach. This study inspired us to work towards developing an automatic diagnostic system that can quickly and accurately screen large numbers of people with COVID-19. Conclusions: We tested a deep learning algorithm to accurately detect COVID-19 and differentiate between healthy control samples, COVID-19 samples, and common pneumonia samples. We found that TL can significantly increase accuracy when the sample size is limited.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
WOS研究方向
Oncology ; Research & Experimental Medicine
WOS类目
Oncology ; Medicine, Research & Experimental
WOS记录号
WOS:000777859500001
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/329284
专题南方科技大学第二附属医院
南方科技大学第一附属医院
作者单位
1.Southern Univ Sci & Technol, Natl Clin Res Ctr Infect Dis, Shenzhen Peoples Hosp 3, Dept Radiol,Hosp 2, 29 Bulan Rd, Shenzhen 518000, Peoples R China
2.Univ Chinese Acad Sci, Chinese Acad Sci, Shenzhen Coll Adv Technol, Shenzhen Inst Adv Technol, Shenzhen, Peoples R China
第一作者单位南方科技大学第二附属医院;  南方科技大学第一附属医院
通讯作者单位南方科技大学第二附属医院;  南方科技大学第一附属医院
第一作者的第一单位南方科技大学第二附属医院;  南方科技大学第一附属医院
推荐引用方式
GB/T 7714
Cao, Yi,Zhang, Chen,Peng, Cheng,et al. A convolutional neural network-based COVID-19 detection method using chest CT images[J]. Annals of Translational Medicine,2022.
APA
Cao, Yi.,Zhang, Chen.,Peng, Cheng.,Zhang, Guangfeng.,Sun, Yi.,...&Liu, Jikui.(2022).A convolutional neural network-based COVID-19 detection method using chest CT images.Annals of Translational Medicine.
MLA
Cao, Yi,et al."A convolutional neural network-based COVID-19 detection method using chest CT images".Annals of Translational Medicine (2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Cao, Yi]的文章
[Zhang, Chen]的文章
[Peng, Cheng]的文章
百度学术
百度学术中相似的文章
[Cao, Yi]的文章
[Zhang, Chen]的文章
[Peng, Cheng]的文章
必应学术
必应学术中相似的文章
[Cao, Yi]的文章
[Zhang, Chen]的文章
[Peng, Cheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。