中文版 | English
题名

An adaptive model switch-based surrogate-assisted evolutionary algorithm for noisy expensive multi-objective optimization

作者
通讯作者Wang, Handing; Yuan, Bo
发表日期
2022-04-01
DOI
发表期刊
ISSN
2199-4536
EISSN
2198-6053
摘要
To solve noisy and expensive multi-objective optimization problems, there are only a few function evaluations can be used due to the limitation of time and/or money. Because of the influence of noises, the evaluations are inaccurate. It is challenging for the existing surrogate-assisted evolutionary algorithms. Due to the influence of noises, the performance of the surrogate model constructed by these algorithms is degraded. At the same time, noises would mislead the evolution direction. More importantly, because of the limitations of function evaluations, noise treatment methods consuming many function evaluations cannot be applied. An adaptive model switch-based surrogate-assisted evolutionary algorithm is proposed to solve such problems in this paper. The algorithm establishes radial basis function networks for denoising. An adaptive model switch strategy is adopted to select suited surrogate model from Gaussian regression and radial basis function network. It adaptively selects the sampling strategies based on the maximum improvement in the convergence, diversity, and approximation uncertainty to make full use of the limited number of function evaluations. The experimental results on a set of test problems show that the proposed algorithm is more competitive than the five most advanced surrogate-assisted evolutionary algorithms.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
资助项目
National Natural Science Foundation of China[61976165] ; Guangdong Provincial Key Laboratory[2020B121201001]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:000777239200002
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:12
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/329399
专题南方科技大学
作者单位
1.Xidian Univ, Sch Artificial Intelligence, Xian 710071, Shaanxi, Peoples R China
2.Southern Univ Sci & Technol, Guangdong Prov Key Lab Braininspired Intelligent, Shenzhen 518055, Peoples R China
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Zheng, Nan,Wang, Handing,Yuan, Bo. An adaptive model switch-based surrogate-assisted evolutionary algorithm for noisy expensive multi-objective optimization[J]. Complex & Intelligent Systems,2022.
APA
Zheng, Nan,Wang, Handing,&Yuan, Bo.(2022).An adaptive model switch-based surrogate-assisted evolutionary algorithm for noisy expensive multi-objective optimization.Complex & Intelligent Systems.
MLA
Zheng, Nan,et al."An adaptive model switch-based surrogate-assisted evolutionary algorithm for noisy expensive multi-objective optimization".Complex & Intelligent Systems (2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zheng, Nan]的文章
[Wang, Handing]的文章
[Yuan, Bo]的文章
百度学术
百度学术中相似的文章
[Zheng, Nan]的文章
[Wang, Handing]的文章
[Yuan, Bo]的文章
必应学术
必应学术中相似的文章
[Zheng, Nan]的文章
[Wang, Handing]的文章
[Yuan, Bo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。