中文版 | English
题名

The reservoir learning power across quantum many-body localization transition

作者
通讯作者Qiu, Xingze; Li, Xiaopeng
发表日期
2022-06-01
DOI
发表期刊
ISSN
2095-0462
EISSN
2095-0470
卷号17期号:3
摘要
Harnessing the quantum computation power of the present noisy-intermediate-size-quantum devices has received tremendous interest in the last few years. Here we study the learning power of a one-dimensional long-range randomly-coupled quantum spin chain, within the framework of reservoir computing. In time sequence learning tasks, we find the system in the quantum many-body localized (MBL) phase holds long-term memory, which can be attributed to the emergent local integrals of motion. On the other hand, MBL phase does not provide sufficient nonlinearity in learning highly-nonlinear time sequences, which we show in a parity check task. This is reversed in the quantum ergodic phase, which provides sufficient nonlinearity but compromises memory capacity. In a complex learning task of Mackey-Glass prediction that requires both sufficient memory capacity and nonlinearity, we find optimal learning performance near the MBL-to-ergodic transition. This leads to a guiding principle of quantum reservoir engineering at the edge of quantum ergodicity reaching optimal learning power for generic complex reservoir learning tasks. Our theoretical finding can be tested with near-term NISQ quantum devices.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
资助项目
National Program on Key Basic Research Project of China["2021YFA1400900","2017YFA0304204"] ; National Natural Science Foundation of China[11774067,11934002] ; Shanghai Municipal Science and Technology Major Project[2019SHZDZX01] ; Shanghai Science Foundation[19ZR1471500] ; Open Project of Shenzhen Institute of Quantum Science and Engineering[SIQSE202002] ; National Postdoctoral Program for Innovative Talents of China[BX20190083]
WOS研究方向
Physics
WOS类目
Physics, Multidisciplinary
WOS记录号
WOS:000778484400002
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:7
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/329401
专题量子科学与工程研究院
作者单位
1.Fudan Univ, Inst Nanoelect & Quantum Comp, State Key Lab Surface Phys, Shanghai 200433, Peoples R China
2.Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
3.Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
4.Shanghai Qi Zhi Inst, Al Tower, Shanghai 200232, Peoples R China
通讯作者单位量子科学与工程研究院
推荐引用方式
GB/T 7714
Xia, Wei,Zou, Jie,Qiu, Xingze,et al. The reservoir learning power across quantum many-body localization transition[J]. Frontiers of Physics,2022,17(3).
APA
Xia, Wei,Zou, Jie,Qiu, Xingze,&Li, Xiaopeng.(2022).The reservoir learning power across quantum many-body localization transition.Frontiers of Physics,17(3).
MLA
Xia, Wei,et al."The reservoir learning power across quantum many-body localization transition".Frontiers of Physics 17.3(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xia, Wei]的文章
[Zou, Jie]的文章
[Qiu, Xingze]的文章
百度学术
百度学术中相似的文章
[Xia, Wei]的文章
[Zou, Jie]的文章
[Qiu, Xingze]的文章
必应学术
必应学术中相似的文章
[Xia, Wei]的文章
[Zou, Jie]的文章
[Qiu, Xingze]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。