题名 | The reservoir learning power across quantum many-body localization transition |
作者 | |
通讯作者 | Qiu, Xingze; Li, Xiaopeng |
发表日期 | 2022-06-01
|
DOI | |
发表期刊 | |
ISSN | 2095-0462
|
EISSN | 2095-0470
|
卷号 | 17期号:3 |
摘要 | Harnessing the quantum computation power of the present noisy-intermediate-size-quantum devices has received tremendous interest in the last few years. Here we study the learning power of a one-dimensional long-range randomly-coupled quantum spin chain, within the framework of reservoir computing. In time sequence learning tasks, we find the system in the quantum many-body localized (MBL) phase holds long-term memory, which can be attributed to the emergent local integrals of motion. On the other hand, MBL phase does not provide sufficient nonlinearity in learning highly-nonlinear time sequences, which we show in a parity check task. This is reversed in the quantum ergodic phase, which provides sufficient nonlinearity but compromises memory capacity. In a complex learning task of Mackey-Glass prediction that requires both sufficient memory capacity and nonlinearity, we find optimal learning performance near the MBL-to-ergodic transition. This leads to a guiding principle of quantum reservoir engineering at the edge of quantum ergodicity reaching optimal learning power for generic complex reservoir learning tasks. Our theoretical finding can be tested with near-term NISQ quantum devices. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | National Program on Key Basic Research Project of China["2021YFA1400900","2017YFA0304204"]
; National Natural Science Foundation of China[11774067,11934002]
; Shanghai Municipal Science and Technology Major Project[2019SHZDZX01]
; Shanghai Science Foundation[19ZR1471500]
; Open Project of Shenzhen Institute of Quantum Science and Engineering[SIQSE202002]
; National Postdoctoral Program for Innovative Talents of China[BX20190083]
|
WOS研究方向 | Physics
|
WOS类目 | Physics, Multidisciplinary
|
WOS记录号 | WOS:000778484400002
|
出版者 | |
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:7
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/329401 |
专题 | 量子科学与工程研究院 |
作者单位 | 1.Fudan Univ, Inst Nanoelect & Quantum Comp, State Key Lab Surface Phys, Shanghai 200433, Peoples R China 2.Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China 3.Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China 4.Shanghai Qi Zhi Inst, Al Tower, Shanghai 200232, Peoples R China |
通讯作者单位 | 量子科学与工程研究院 |
推荐引用方式 GB/T 7714 |
Xia, Wei,Zou, Jie,Qiu, Xingze,et al. The reservoir learning power across quantum many-body localization transition[J]. Frontiers of Physics,2022,17(3).
|
APA |
Xia, Wei,Zou, Jie,Qiu, Xingze,&Li, Xiaopeng.(2022).The reservoir learning power across quantum many-body localization transition.Frontiers of Physics,17(3).
|
MLA |
Xia, Wei,et al."The reservoir learning power across quantum many-body localization transition".Frontiers of Physics 17.3(2022).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论