中文版 | English
题名

Mechanical Fault Prognosis through Spectral Analysis of Vibration Signals

作者
通讯作者Xu, Zhi-Jiang
发表日期
2022-03-01
DOI
发表期刊
EISSN
1999-4893
卷号15期号:3
摘要
Vibration signal analysis is the most common technique used for mechanical vibration monitoring. By using vibration sensors, the fault prognosis of rotating machinery provides a way to detect possible machine damage at an early stage and prevent property losses by taking appropriate measures. We first propose a digital integrator in frequency domain by combining fast Fourier transform with digital filtering. The velocity and displacement signals are, respectively, obtained from an acceleration signal by means of two digital integrators. We then propose a fast method for the calculation of the envelope spectra and instantaneous frequency by using the spectral properties of the signals. Cepstrum is also introduced in order to detect the unidentifiable periodic signal in the power spectrum. Further, a fault prognosis algorithm is presented by exploiting these spectral analyses. Finally, we design and implement a visualized real-time vibration analyzer on a Raspberry Pi embedded system, where our fault prognosis algorithm is the core algorithm. The real-time signals of acceleration, velocity, displacement of vibration, as well as their corresponding spectra and statistics, are visualized. The developed fault prognosis system has been successfully deployed in a water company.
关键词
相关链接[来源记录]
收录类别
ESCI ; EI
语种
英语
学校署名
其他
资助项目
Science and Technology Project Funds of Zhejiang Provincial Water Resources Department[RC2162] ; National Natural Science Foundation of China[62071212]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号
WOS:000776843400001
出版者
EI入藏号
20221511947783
EI主题词
Acceleration ; Fast Fourier transforms ; Frequency domain analysis ; Machinery ; Signal analysis ; Vibration analysis
EI分类号
Information Theory and Signal Processing:716.1 ; Mathematical Transformations:921.3
来源库
Web of Science
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/329405
专题工学院_电子与电气工程系
作者单位
1.Zhejiang Police Coll, Comp & Informat Secur Dept, Hangzhou 310018, Peoples R China
2.Zhejiang Inst Mech & Elect Engn, Sch Automat, Hangzhou 310059, Peoples R China
3.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen 518055, Peoples R China
4.Concordia Univ, Dept Elect & Comp Engn, Montreal, PQ H3G 2W1, Canada
推荐引用方式
GB/T 7714
Wang, Kang,Xu, Zhi-Jiang,Gong, Yi,et al. Mechanical Fault Prognosis through Spectral Analysis of Vibration Signals[J]. ALGORITHMS,2022,15(3).
APA
Wang, Kang,Xu, Zhi-Jiang,Gong, Yi,&Du, Ke-Lin.(2022).Mechanical Fault Prognosis through Spectral Analysis of Vibration Signals.ALGORITHMS,15(3).
MLA
Wang, Kang,et al."Mechanical Fault Prognosis through Spectral Analysis of Vibration Signals".ALGORITHMS 15.3(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang, Kang]的文章
[Xu, Zhi-Jiang]的文章
[Gong, Yi]的文章
百度学术
百度学术中相似的文章
[Wang, Kang]的文章
[Xu, Zhi-Jiang]的文章
[Gong, Yi]的文章
必应学术
必应学术中相似的文章
[Wang, Kang]的文章
[Xu, Zhi-Jiang]的文章
[Gong, Yi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。