题名 | Effective maximum principles for spectral methods |
作者 | |
发表日期 | 2021-03
|
DOI | |
发表期刊 | |
卷号 | 37期号:2页码:131-290 |
摘要 | Many physical problems such as Allen-Cahn flows have natural maximum principles which yield strong point-wise control of the physical solutions in terms of the boundary data, the initial conditions and the operator coefficients. Sharp/strict maximum principles insomuch of fundamental importance for the continuous problem often do not persist under numerical discretization. A lot of past research concentrates on designing fine numerical schemes which preserves the sharp maximum principles especially for nonlinear problems. However these sharp principles not only sometimes introduce unwanted stringent conditions on the numerical schemes but also completely leaves many powerful frequencybased methods unattended and rarely analyzed directly in the sharp maximum norm topology. A prominent example is the spectral methods in the family of weighted residual methods. In this work we introduce and develop a new framework of almost sharp maximum principles which allow the numerical solutions to deviate from the sharp bound by a controllable discretization error: we call them effective maximum principles. We showcase the analysis for the classical Fourier spectral methods including Fourier Galerkin and Fourier collocation in space with forward Euler in time or second order Strang splitting. The model equations include the Allen-Cahn equations with double well potential, the Burgers equation and the Navier-Stokes equations. We give a comprehensive proof of the effective maximum principles under very general parametric conditions. |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
|
来源库 | 人工提交
|
引用统计 |
被引频次[WOS]:0
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/329410 |
专题 | 理学院_数学系 深圳国际数学中心(杰曼诺夫数学中心)(筹) |
作者单位 | SUSTech International Center for Mathematics and Department of Mathematics, Southern University of Science and Technology |
第一作者单位 | 数学系; 深圳国际数学中心(杰曼诺夫数学中心)(筹) |
第一作者的第一单位 | 数学系; 深圳国际数学中心(杰曼诺夫数学中心)(筹) |
推荐引用方式 GB/T 7714 |
Dong Li. Effective maximum principles for spectral methods[J]. Annals of Applied Mathematics,2021,37(2):131-290.
|
APA |
Dong Li.(2021).Effective maximum principles for spectral methods.Annals of Applied Mathematics,37(2),131-290.
|
MLA |
Dong Li."Effective maximum principles for spectral methods".Annals of Applied Mathematics 37.2(2021):131-290.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Effective maximum pr(10596KB) | -- | -- | 限制开放 | -- |
个性服务 |
原文链接 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
导出为Excel格式 |
导出为Csv格式 |
Altmetrics Score |
谷歌学术 |
谷歌学术中相似的文章 |
[Dong Li]的文章 |
百度学术 |
百度学术中相似的文章 |
[Dong Li]的文章 |
必应学术 |
必应学术中相似的文章 |
[Dong Li]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论