中文版 | English
题名

Enhanced expressive power and fast training of neural networks by random projection

作者
通讯作者Dong Li
发表日期
2021-09
DOI
发表期刊
ISSN
2708-0560
EISSN
2708-0579
卷号2期号:3页码:532-550
摘要

Random projections are able to perform dimension reduction efficiently for datasets with nonlinear low-dimensional structures. One well-known example is that random matrices embed sparse vectors into a low-dimensional subspace nearly isometrically, known as the restricted isometric property in compressed sensing. In this paper, we explore some applications of random projections in deep neural networks. We provide the expressive power of fully connected neural networks when the input data are sparse vectors or form a low-dimensional smooth manifold. We prove that the number of neurons required for approximating a Lipschitz function with a prescribed precision depends on the sparsity or the dimension of the manifold and weakly on the dimension of the input vector. The key in our proof is that random projections embed stably the set of sparse vectors or a low-dimensional smooth manifold into a lowdimensional subspace. Based on this fact, we also propose some new neural network models, where at each layer the input is first projected onto a low-dimensional subspace by a random projection and then the standard linear connection and non-linear activation are applied. In this way, the number of parameters in neural networks is significantly reduced, and therefore the training of neural networks can be accelerated without too much performance loss.

关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
资助项目
Hong Kong RGC["GRF 16310620","GRF 16309219"] ; HKUST Initiation Grant[IGN16SC05]
WOS研究方向
Mathematics
WOS类目
Mathematics, Applied
WOS记录号
WOS:000798416000006
出版者
来源库
人工提交
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/329414
专题理学院_数学系
工学院_电子与电气工程系
深圳国际数学中心(杰曼诺夫数学中心)(筹)
作者单位
1.Department of Mathematics, The Hong Kong University of Science and Technology
2.SUSTech International Center for Mathematics and Department of Mathematics, Southern University of Science and Technology
3.Department of Electrical and Electronic Engineering, Imperial College London, South Kensington Campus
通讯作者单位数学系;  深圳国际数学中心(杰曼诺夫数学中心)(筹)
推荐引用方式
GB/T 7714
Jian-Feng Cai,Dong Li,Jiaze Sun,et al. Enhanced expressive power and fast training of neural networks by random projection[J]. CSIAM Transactions on Applied Mathematics,2021,2(3):532-550.
APA
Jian-Feng Cai,Dong Li,Jiaze Sun,&Ke Wang.(2021).Enhanced expressive power and fast training of neural networks by random projection.CSIAM Transactions on Applied Mathematics,2(3),532-550.
MLA
Jian-Feng Cai,et al."Enhanced expressive power and fast training of neural networks by random projection".CSIAM Transactions on Applied Mathematics 2.3(2021):532-550.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Enhanced Expressive (2543KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Jian-Feng Cai]的文章
[Dong Li]的文章
[Jiaze Sun]的文章
百度学术
百度学术中相似的文章
[Jian-Feng Cai]的文章
[Dong Li]的文章
[Jiaze Sun]的文章
必应学术
必应学术中相似的文章
[Jian-Feng Cai]的文章
[Dong Li]的文章
[Jiaze Sun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。