题名 | Multi-Objective Meta Learning |
作者 | |
通讯作者 | Yu Zhang |
共同第一作者 | Baijiong Lin |
发表日期 | 2021
|
会议名称 | Thirty-Fifth Conference on Neural Information Processing Systems
|
卷号 | 26
|
页码 | 21338-21351
|
会议日期 | 22 May 2021
|
会议地点 | Online
|
摘要 | Meta learning with multiple objectives has been attracted much attention recently since many applications need to consider multiple factors when designing learning models. Existing gradient-based works on meta learning with multiple objectives mainly combine multiple objectives into a single objective in a weighted sum manner. This simple strategy usually works but it requires to tune the weights associated with all the objectives, which could be time consuming. Different from those works, in this paper, we propose a gradient-based Multi-Objective Meta Learning (MOML) framework without manually tuning weights. Specifically, MOML formulates the objective function of meta learning with multiple objectives as a Multi-Objective Bi-Level optimization Problem (MOBLP) where the upper-level subproblem is to solve several possibly conflicting objectives for the meta learner. To solve the MOBLP, we devise the first gradient-based optimization algorithm by alternatively solving the lower-level and upper-level subproblems via the gradient descent method and the gradient-based multi-objective optimization method, respectively. Theoretically, we prove the convergence properties of the proposed gradient-based optimization algorithm. Empirically, we show the effectiveness of the proposed MOML framework in several meta learning problems, including few-shot learning, domain adaptation, multi-task learning, and neural architecture search. |
关键词 | |
学校署名 | 第一
; 共同第一
; 通讯
|
收录类别 | |
EI入藏号 | 20222412232710
|
EI主题词 | Gradient methods
; Learning systems
|
EI分类号 | Optimization Techniques:921.5
; Numerical Methods:921.6
|
来源库 | 人工提交
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/329423 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Department of Computer Science and Engineering, Southern University of Science and Technology 2.University of Technology Sydney 3.Eindhoven University of Technology 4.Peng Cheng Laboratory |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Feiyang YE,Baijiong Lin,Zhixiong Yue,et al. Multi-Objective Meta Learning[C],2021:21338-21351.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
MOML.pdf(755KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论