题名 | Achieving Efficient and Adaptable Dispatching for Vehicle-to-Grid Using Distributed Edge Computing and Attention-Based LSTM |
作者 | |
通讯作者 | Jian,Linni |
发表日期 | 2021
|
DOI | |
发表期刊 | |
ISSN | 1941-0050
|
EISSN | 1941-0050
|
卷号 | 18期号:10页码:6915-6926 |
摘要 | With the popularity of electric vehicles (EVs), vehicle-to-grid (V2G) technology is attracting increasing attention due to its crucial merit of enabling bidirectional power flows between EVs and grid, so as to enhance the grid security and stability by regulated dispatching. However, the existing V2G approaches are confronted with several unrealizable challenges because of high computational complexity for large-scale EVs and impracticality for future power data acquisition. In this article, an edge computing framework is proposed in a distributed manner to ensure the dispatching efficiently and provide the raw dataset flexibly. Meanwhile, the long short-term memory network is applied to prediction merely by the past and present power data. Moreover, attention mechanism and data clustering are utilized to improve the prediction accuracy and operation robustness. Experiments involving real dataset demonstrated that the proposed V2G scheme is able to achieve very satisfactory dispatching performance with the prediction accuracy up to 98.89%. |
关键词 | |
相关链接 | [IEEE记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | Natural Science Foundation of Guangdong Province[2019B101001022]
; Department of Education of Guangdong Province[2020ZDZX3002]
; Guangzhou Municipal Science and Technology Bureau[202102010416]
|
WOS研究方向 | Automation & Control Systems
; Computer Science
; Engineering
|
WOS类目 | Automation & Control Systems
; Computer Science, Interdisciplinary Applications
; Engineering, Industrial
|
WOS记录号 | WOS:000838389400044
|
出版者 | |
来源库 | Web of Science
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9667317 |
引用统计 |
被引频次[WOS]:21
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/329429 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China 2.China Mobile Research Institute, Beijing 3.School of Electronics and Communication Engineering Guangzhou University Guangzhou 510006, China |
第一作者单位 | 电子与电气工程系 |
通讯作者单位 | 电子与电气工程系 |
第一作者的第一单位 | 电子与电气工程系 |
推荐引用方式 GB/T 7714 |
Shang,Yitong,Shang,Yimeng,Yu,Hang,et al. Achieving Efficient and Adaptable Dispatching for Vehicle-to-Grid Using Distributed Edge Computing and Attention-Based LSTM[J]. IEEE Transactions on Industrial Informatics,2021,18(10):6915-6926.
|
APA |
Shang,Yitong,Shang,Yimeng,Yu,Hang,Shao,Ziyun,&Jian,Linni.(2021).Achieving Efficient and Adaptable Dispatching for Vehicle-to-Grid Using Distributed Edge Computing and Attention-Based LSTM.IEEE Transactions on Industrial Informatics,18(10),6915-6926.
|
MLA |
Shang,Yitong,et al."Achieving Efficient and Adaptable Dispatching for Vehicle-to-Grid Using Distributed Edge Computing and Attention-Based LSTM".IEEE Transactions on Industrial Informatics 18.10(2021):6915-6926.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Achieving_Efficient_(7660KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论