中文版 | English
题名

Achieving Efficient and Adaptable Dispatching for Vehicle-to-Grid Using Distributed Edge Computing and Attention-Based LSTM

作者
通讯作者Jian,Linni
发表日期
2021
DOI
发表期刊
ISSN
1941-0050
EISSN
1941-0050
卷号18期号:10页码:6915-6926
摘要

With the popularity of electric vehicles (EVs), vehicle-to-grid (V2G) technology is attracting increasing attention due to its crucial merit of enabling bidirectional power flows between EVs and grid, so as to enhance the grid security and stability by regulated dispatching. However, the existing V2G approaches are confronted with several unrealizable challenges because of high computational complexity for large-scale EVs and impracticality for future power data acquisition. In this article, an edge computing framework is proposed in a distributed manner to ensure the dispatching efficiently and provide the raw dataset flexibly. Meanwhile, the long short-term memory network is applied to prediction merely by the past and present power data. Moreover, attention mechanism and data clustering are utilized to improve the prediction accuracy and operation robustness. Experiments involving real dataset demonstrated that the proposed V2G scheme is able to achieve very satisfactory dispatching performance with the prediction accuracy up to 98.89%.

关键词
相关链接[IEEE记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
Natural Science Foundation of Guangdong Province[2019B101001022] ; Department of Education of Guangdong Province[2020ZDZX3002] ; Guangzhou Municipal Science and Technology Bureau[202102010416]
WOS研究方向
Automation & Control Systems ; Computer Science ; Engineering
WOS类目
Automation & Control Systems ; Computer Science, Interdisciplinary Applications ; Engineering, Industrial
WOS记录号
WOS:000838389400044
出版者
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9667317
引用统计
被引频次[WOS]:21
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/329429
专题工学院_电子与电气工程系
作者单位
1.Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
2.China Mobile Research Institute, Beijing
3.School of Electronics and Communication Engineering Guangzhou University Guangzhou 510006, China
第一作者单位电子与电气工程系
通讯作者单位电子与电气工程系
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Shang,Yitong,Shang,Yimeng,Yu,Hang,et al. Achieving Efficient and Adaptable Dispatching for Vehicle-to-Grid Using Distributed Edge Computing and Attention-Based LSTM[J]. IEEE Transactions on Industrial Informatics,2021,18(10):6915-6926.
APA
Shang,Yitong,Shang,Yimeng,Yu,Hang,Shao,Ziyun,&Jian,Linni.(2021).Achieving Efficient and Adaptable Dispatching for Vehicle-to-Grid Using Distributed Edge Computing and Attention-Based LSTM.IEEE Transactions on Industrial Informatics,18(10),6915-6926.
MLA
Shang,Yitong,et al."Achieving Efficient and Adaptable Dispatching for Vehicle-to-Grid Using Distributed Edge Computing and Attention-Based LSTM".IEEE Transactions on Industrial Informatics 18.10(2021):6915-6926.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Achieving_Efficient_(7660KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Shang,Yitong]的文章
[Shang,Yimeng]的文章
[Yu,Hang]的文章
百度学术
百度学术中相似的文章
[Shang,Yitong]的文章
[Shang,Yimeng]的文章
[Yu,Hang]的文章
必应学术
必应学术中相似的文章
[Shang,Yitong]的文章
[Shang,Yimeng]的文章
[Yu,Hang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。