题名 | Community Detection Based on Surrogate Network |
作者 | |
通讯作者 | Shi,Yuhui |
DOI | |
发表日期 | 2022
|
ISSN | 1865-0929
|
EISSN | 1865-0937
|
会议录名称 | |
卷号 | 1566 CCIS
|
页码 | 45-53
|
摘要 | This paper presents a novel methodology to detect communities in complex networks based on evolutionary computation. In the proposed method, a surrogate network with a more detectable community structure than the original network is firstly constructed based on the eigenmatrix of the adjacent matrix. Then the community partition can be found by successively optimizing the modularity of the surrogate network and the original network with an evolutionary algorithm. The proposed method is tested on both synthetic and real-world networks and compared with some existing algorithms. Experimental results show that employing the constructed surrogate networks can effectively improve the community detection efficiency. |
关键词 | |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20221511956118
|
EI主题词 | Evolutionary algorithms
; Matrix algebra
; Population dynamics
|
EI分类号 | Computer Systems and Equipment:722
; Algebra:921.1
; Social Sciences:971
|
Scopus记录号 | 2-s2.0-85127884235
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/329614 |
专题 | 南方科技大学 |
作者单位 | 1.Harbin Institute of Technology,Harbin,150001,China 2.Southern University of Science and Technology,Shenzhen,518055,China 3.University of Technology Sydney,Sydney,Australia |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Lyu,Chao,Shi,Yuhui,Sun,Lijun. Community Detection Based on Surrogate Network[C],2022:45-53.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论