中文版 | English
题名

Turning Channel Noise into an Accelerator for Over-the-Air Principal Component Analysis

作者
通讯作者Wang,Rui; Huang,Kaibin
发表日期
2022
DOI
发表期刊
ISSN
1536-1276
EISSN
1558-2248
摘要

The enormous data distributed at the network edge and ubiquitous connectivity have led to the emergence of the new paradigm of distributed machine learning and large-scale data analytics. Distributed principal component analysis (PCA) concerns finding a low-dimensional subspace that contains the most important information of high-dimensional data distributed over the network edge. The subspace is useful for distributed data compression and feature extraction. This work advocates the application of over-the-air federated learning to efficient implementation of distributed PCA in a wireless network under a data-privacy constraint, termed AirPCA. The design features the exploitation of the waveform-superposition property of a multi-access channel to realize over-the-air aggregation of local subspace updates computed and simultaneously transmitted by devices to a server, thereby reducing the multi-access latency. The original drawback of this class of techniques, namely channel-noise perturbation to uncoded analog modulated signals, is turned into a mechanism for escaping from saddle points during stochastic gradient descent (SGD) in the AirPCA algorithm. As a result, the convergence of the AirPCA algorithm is accelerated. To materialize the idea, descent speeds in different types of descent regions are analyzed mathematically using martingale theory by accounting for wireless propagation and techniques including broadband transmission, over-the-air aggregation, channel fading and noise. The results reveal the accelerating effect of noise in saddle regions and the opposite effect in other types of regions. The insight and results are applied to designing an online scheme for adapting receive signal power to the type of current descent region. Specifically, the scheme amplifies the noise effects in saddle regions by reducing signal power and applies the power savings to suppressing the effects in other regions. From experiments using real datasets, such power control is found to accelerate convergence while achieving the same convergence accuracy as in the ideal case of centralized PCA.

关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
通讯
EI入藏号
20221511959355
EI主题词
Clustering Algorithms ; Data Privacy ; Fading Channels ; Learning Systems ; Power Control ; Principal Component Analysis ; Stochastic Systems
EI分类号
Electromagnetic Waves In Relation To Various Structures:711.2 ; Information Theory And Signal Processing:716.1 ; Control Systems:731.1 ; Specific Variables Control:731.3 ; Information Sources And Analysis:903.1 ; Mathematical Statistics:922.2 ; Systems Science:961
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85127753576
来源库
Scopus
引用统计
被引频次[WOS]:9
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/329623
专题南方科技大学
作者单位
1.University of Hong Kong, Hong Kong.
2.Shenzhen Research Institute of Big Data, China.
3.Southern University of Science and Technology, China.
4.Hong Kong University of Science and Technology, Hong Kong.
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Zhang,Zezhong,Zhu,Guangxu,Wang,Rui,et al. Turning Channel Noise into an Accelerator for Over-the-Air Principal Component Analysis[J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,2022.
APA
Zhang,Zezhong,Zhu,Guangxu,Wang,Rui,Lau,Vincent K.N.,&Huang,Kaibin.(2022).Turning Channel Noise into an Accelerator for Over-the-Air Principal Component Analysis.IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS.
MLA
Zhang,Zezhong,et al."Turning Channel Noise into an Accelerator for Over-the-Air Principal Component Analysis".IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS (2022).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
10.1109@TWC.2022.316(5999KB)----开放获取--浏览
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Zezhong]的文章
[Zhu,Guangxu]的文章
[Wang,Rui]的文章
百度学术
百度学术中相似的文章
[Zhang,Zezhong]的文章
[Zhu,Guangxu]的文章
[Wang,Rui]的文章
必应学术
必应学术中相似的文章
[Zhang,Zezhong]的文章
[Zhu,Guangxu]的文章
[Wang,Rui]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@TWC.2022.3162868.pdf
格式: Adobe PDF
文件名: 10.1109@TWC.2022.3162868.pdf
格式: Adobe PDF
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。