中文版 | English
题名

Deep learning for video object segmentation: a review

作者
通讯作者Han,Jungong
发表日期
2022
DOI
发表期刊
ISSN
0269-2821
EISSN
1573-7462
卷号56期号:1页码:457-531
摘要
As one of the fundamental problems in the field of video understanding, video object segmentation aims at segmenting objects of interest throughout the given video sequence. Recently, with the advancements of deep learning techniques, deep neural networks have shown outstanding performance improvements in many computer vision applications, with video object segmentation being one of the most advocated and intensively investigated. In this paper, we present a systematic review of the deep learning-based video segmentation literature, highlighting the pros and cons of each category of approaches. Concretely, we start by introducing the definition, background concepts and basic ideas of algorithms in this field. Subsequently, we summarise the datasets for training and testing a video object segmentation algorithm, as well as common challenges and evaluation metrics. Next, previous works are grouped and reviewed based on how they extract and use spatial and temporal features, where their architectures, contributions and the differences among each other are elaborated. At last, the quantitative and qualitative results of several representative methods on a dataset with many remaining challenges are provided and analysed, followed by further discussions on future research directions. This article is expected to serve as a tutorial and source of reference for learners intended to quickly grasp the current progress in this research area and practitioners interested in applying the video object segmentation methods to their problems. A public website is built to collect and track the related works in this field: https://github.com/gaomingqi/VOS-Review.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:000781305100001
出版者
EI入藏号
20221511947307
EI主题词
Convolutional neural networks ; Deep neural networks ; Motion compensation ; Well testing
EI分类号
Ergonomics and Human Factors Engineering:461.4
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85127648745
来源库
Scopus
引用统计
被引频次[WOS]:31
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/329630
专题工学院_计算机科学与工程系
作者单位
1.WMG Data Science,University of Warwick,Coventry,CV4 7AL,United Kingdom
2.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
3.College of Electrical Engineering and Automation,Shandong University of Science and Technology,Qingdao,266590,China
4.School of Software,Tsinghua University,Beijing,100084,China
5.Department of Computer Science,Aberystwyth University,Aberystwyth,SY23 3DB,United Kingdom
第一作者单位计算机科学与工程系
推荐引用方式
GB/T 7714
Gao,Mingqi,Zheng,Feng,Yu,James J.Q.,et al. Deep learning for video object segmentation: a review[J]. ARTIFICIAL INTELLIGENCE REVIEW,2022,56(1):457-531.
APA
Gao,Mingqi,Zheng,Feng,Yu,James J.Q.,Shan,Caifeng,Ding,Guiguang,&Han,Jungong.(2022).Deep learning for video object segmentation: a review.ARTIFICIAL INTELLIGENCE REVIEW,56(1),457-531.
MLA
Gao,Mingqi,et al."Deep learning for video object segmentation: a review".ARTIFICIAL INTELLIGENCE REVIEW 56.1(2022):457-531.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Gao,Mingqi]的文章
[Zheng,Feng]的文章
[Yu,James J.Q.]的文章
百度学术
百度学术中相似的文章
[Gao,Mingqi]的文章
[Zheng,Feng]的文章
[Yu,James J.Q.]的文章
必应学术
必应学术中相似的文章
[Gao,Mingqi]的文章
[Zheng,Feng]的文章
[Yu,James J.Q.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。