中文版 | English
题名

Revisiting Self-Training for Few-Shot Learning of Language Model

作者
通讯作者Cheng,Ran
发表日期
2021
会议名称
Conference on Empirical Methods in Natural Language Processing (EMNLP)
会议录名称
页码
9125-9135
会议日期
NOV 07-11, 2021
会议地点
null,Punta Cana,DOMINICAN REP
出版地
209 N EIGHTH STREET, STROUDSBURG, PA 18360 USA
出版者
摘要
As unlabeled data carry rich task-relevant information, they are proven useful for few-shot learning of language model. The question is how to effectively make use of such data. In this work, we revisit the self-training technique for language model fine-tuning and present a state-of-the-art prompt-based few-shot learner, SFLM. Given two views of a text sample via weak and strong augmentation techniques, SFLM generates a pseudo label on the weakly augmented version. Then, the model predicts the same pseudo label when fine-tuned with the strongly augmented version. This simple approach is shown to outperform other state-of-the-art supervised and semi-supervised counterparts on six sentence classification and six sentence-pair classification benchmarking tasks. In addition, SFLM only relies on a few in-domain unlabeled data. We conduct a comprehensive analysis to demonstrate the robustness of our proposed approach under various settings, including augmentation techniques, model scale, and few-shot knowledge transfer across tasks.
学校署名
通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
Norsk Revmatikerforbund[A18A2b0046];
WOS研究方向
Computer Science ; Linguistics
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Linguistics
WOS记录号
WOS:000860727003020
EI入藏号
20221411909963
EI主题词
Computational linguistics ; Learning systems
EI分类号
Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1 ; Computer Applications:723.5 ; Information Retrieval and Use:903.3
Scopus记录号
2-s2.0-85127402421
来源库
Scopus
引用统计
被引频次[WOS]:11
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/329673
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.National University of Singapore,Singapore
2.Southern University of Science and Technology,China
3.The Chinese University of Hong Kong,Shenzhen,Hong Kong
4.Kriston AI Lab,China
第一作者单位南方科技大学
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Chen,Yiming,Zhang,Yan,Zhang,Chen,et al. Revisiting Self-Training for Few-Shot Learning of Language Model[C]. 209 N EIGHTH STREET, STROUDSBURG, PA 18360 USA:ASSOC COMPUTATIONAL LINGUISTICS-ACL,2021:9125-9135.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen,Yiming]的文章
[Zhang,Yan]的文章
[Zhang,Chen]的文章
百度学术
百度学术中相似的文章
[Chen,Yiming]的文章
[Zhang,Yan]的文章
[Zhang,Chen]的文章
必应学术
必应学术中相似的文章
[Chen,Yiming]的文章
[Zhang,Yan]的文章
[Zhang,Chen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。