题名 | Revisiting Self-Training for Few-Shot Learning of Language Model |
作者 | |
通讯作者 | Cheng,Ran |
发表日期 | 2021
|
会议名称 | Conference on Empirical Methods in Natural Language Processing (EMNLP)
|
会议录名称 | |
页码 | 9125-9135
|
会议日期 | NOV 07-11, 2021
|
会议地点 | null,Punta Cana,DOMINICAN REP
|
出版地 | 209 N EIGHTH STREET, STROUDSBURG, PA 18360 USA
|
出版者 | |
摘要 | As unlabeled data carry rich task-relevant information, they are proven useful for few-shot learning of language model. The question is how to effectively make use of such data. In this work, we revisit the self-training technique for language model fine-tuning and present a state-of-the-art prompt-based few-shot learner, SFLM. Given two views of a text sample via weak and strong augmentation techniques, SFLM generates a pseudo label on the weakly augmented version. Then, the model predicts the same pseudo label when fine-tuned with the strongly augmented version. This simple approach is shown to outperform other state-of-the-art supervised and semi-supervised counterparts on six sentence classification and six sentence-pair classification benchmarking tasks. In addition, SFLM only relies on a few in-domain unlabeled data. We conduct a comprehensive analysis to demonstrate the robustness of our proposed approach under various settings, including augmentation techniques, model scale, and few-shot knowledge transfer across tasks. |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | Norsk Revmatikerforbund[A18A2b0046];
|
WOS研究方向 | Computer Science
; Linguistics
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Interdisciplinary Applications
; Linguistics
|
WOS记录号 | WOS:000860727003020
|
EI入藏号 | 20221411909963
|
EI主题词 | Computational linguistics
; Learning systems
|
EI分类号 | Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1
; Computer Applications:723.5
; Information Retrieval and Use:903.3
|
Scopus记录号 | 2-s2.0-85127402421
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:11
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/329673 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | 1.National University of Singapore,Singapore 2.Southern University of Science and Technology,China 3.The Chinese University of Hong Kong,Shenzhen,Hong Kong 4.Kriston AI Lab,China |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Chen,Yiming,Zhang,Yan,Zhang,Chen,et al. Revisiting Self-Training for Few-Shot Learning of Language Model[C]. 209 N EIGHTH STREET, STROUDSBURG, PA 18360 USA:ASSOC COMPUTATIONAL LINGUISTICS-ACL,2021:9125-9135.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论