题名 | FaPN: Feature-aligned Pyramid Network for Dense Image Prediction |
作者 | |
DOI | |
发表日期 | 2021
|
ISSN | 1550-5499
|
ISBN | 978-1-6654-2813-2
|
会议录名称 | |
页码 | 844-853
|
会议日期 | 10-17 Oct. 2021
|
会议地点 | Montreal, QC, Canada
|
摘要 | Recent advancements in deep neural networks have made remarkable leap-forwards in dense image prediction. However, the issue of feature alignment remains as neglected by most existing approaches for simplicity. Direct pixel addition between upsampled and local features leads to feature maps with misaligned contexts that, in turn, translate to mis-classifications in prediction, especially on object boundaries. In this paper, we propose a feature alignment module that learns transformation offsets of pixels to contextually align upsampled higher-level features; and another feature selection module to emphasize the lower-level features with rich spatial details. We then integrate these two modules in a top-down pyramidal architecture and present the Feature-aligned Pyramid Network (FaPN). Extensive experimental evaluations on four dense prediction tasks and four datasets have demonstrated the efficacy of FaPN, yielding an overall improvement of 1.2 - 2.6 points in AP/mIoU over FPN when paired with Faster/Mask R-CNN. In particular, our FaPN achieves the state-of-the-art of 56.7% mIoU on ADE20K when integrated within MaskFormer. The code is available from https://github.com/EMIGroup/FaPN. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[61903178];National Natural Science Foundation of China[61906081];National Natural Science Foundation of China[U20A20306];
|
EI入藏号 | 20221511951285
|
Scopus记录号 | 2-s2.0-85121798784
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9709978 |
引用统计 |
被引频次[WOS]:129
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/329677 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | Department of Computer Science and Engineering,Southern University of Science and Technology, |
第一作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Huang,Shihua,Lu,Zhichao,Cheng,Ran,et al. FaPN: Feature-aligned Pyramid Network for Dense Image Prediction[C],2021:844-853.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
10.1109@ICCV48922.20(9101KB) | -- | -- | 开放获取 | -- | 浏览 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论