中文版 | English
题名

微地震速度模型和高精度定位贝叶斯反演方法

其他题名
BAYESIAN INVERSION FOR MICROSEISMIC VELOCITY OPTIMIZATION AND HIGH PRECISION EVENT LOCATION
姓名
姓名拼音
JIANG Xingda
学号
11749289
学位类型
博士
学位专业
080104 工程力学
学科门类/专业学位类别
08 工学
导师
张伟
导师单位
地球与空间科学系
论文答辩日期
2021-11
论文提交日期
2022-04-19
学位授予单位
哈尔滨工业大学
学位授予地点
深圳
摘要

微地震监测技术是评估非常规油气水力压裂裂缝发展的重要手段。速度模
型的准确性对微地震成像结果起着举足轻重的作用。传统方法根据声波测井信
号建立初始模型,然后利用射孔事件信息进一步优化速度模型。该方法受限于
射孔事件个数较少和射线路径覆盖范围较窄,反演过程中稳定性较差,遇到复
杂地层时反演误差较大,严重影响微地震事件定位精度。为了提高微地震事件
定位准确度,本文在利用微地震信号约束反演过程的基础上,以灵活优化速度
模型的层位结构和速度值为出发点,探讨了复杂地质条件下的速度模型校正方
法和微地震事件定位精度提升手段,并致力于满足实际微地震监测的需求,主
要获得了以下几个成果:
针对复杂地质条件下初始速度模型误差较大、微地震事件定位精度较差的
难题,本文首次将贝叶斯变维方法应用于井中速度模型校正,反演过程中同时
优化速度模型的层位个数、深度以及各层速度值,在射孔事件和微地震事件等
有效信号的约束下,获得稀疏的等效速度模型。理论和实际数据应用均表明,
该方法受声波测井信息影响较小,可以有效提高微地震事件定位精度。
速度模型和微地震事件位置联合反演存在折衷风险,为了防止微地震事件
定位结果出现系统偏差,本文将主事件定位方法和贝叶斯速度参数推导方法相
结合,提出了增量虚拟主事件(IPM)方法。IPM 方法迭代优化微地震事件位置和
速度模型精度,减少了反演参数个数,保证反演稳定性。理论和实际数据应用
均表明,IPM 方法适用于不同地质条件速度模型优化,成倍级减小了微地震事
件定位偏差。
当遇到水力压裂地区存在强各向异性特征严重影响微地震事件定位精度时,
本文基于IPM 方法推断了VTI 介质各向异性参数。在固定维反演测试中,IPM
方法定量预测了各向异性参数的不确定性。在变维反演测试中,IPM 方法成功
获得稀疏的等效各向异性速度模型,减少了微地震事件定位偏差。
针对贝叶斯反演中应用MCMC 采样方法需要多次迭代、影响计算速率的问
题,本文结合打靶法原理简单和最短路径法对速度结构适用性强的特点,开发
了适于多个检波器走时快速计算的各向同性和VTI 介质射线追踪算法。该算法简洁高效,
用稀疏的节点推断出高精度的走时和射线路径,有助于提升速度模
型反演效率,便于实时定位。
本文提出的速度校正方法克服了传统方法约束信息少、速度模型适用性差、
定位误差大、反演效率低的问题,适用于复杂地质条件下的微地震监测,减少
了微地震事件定位偏差到十米量级,反演效率提升了数十倍。适合于实际水力
压裂生产,为提高非常规能源油气采收率提供了有效的保障。

其他摘要

Microseismic monitoring technology has become one of the most important
methods to evaluate hydraulic fracturing in unconventional oil and gas exploitation.
The velocity model in downhole monitoring has a serious effect on the accuracy of
the microseismic image. In the traditional method, the initial velocity model is
established based on acoustic logging signals, and then the velocity model is further
optimized by using the perforation shot information. Due to the limited number of
perforation shots and narrow coverage of ray paths, this method has poor stability in
the inversion process, and it may cause large event location errors in microsei smic
monitoring in complex formations. It is difficult to accurately describe the fracture
morphology of hydraulic fracturing. To improve the location accuracy of
microseismic events, we introduced more effective constraints with the microseismic
events to the velocity optimization. To get a flexible velocity model structure and
improve the event location accuracy, we carefully discussed the velocity optimization
method in complex geological conditions. Also, it was committed to meeting the
needs of field microseismic monitoring. The main achievements are as follows:
To solve the problem of large initial velocity model error and low event location
accuracy under complicated geological conditions, we first introduced the Bayesian
transdimensional inversion to downhole velocity calibration. During the inv ersion
process, the layer number, the layer depths, and the velocity values were updated
simultaneously, and finally a sparse velocity model was obtained under the constraint
of the perforation shots and microseismic events. Both theoretical and field examples
showed that our method was less affected by acoustic logging information, and the
location accuracy of the microseismic events can be effectively improved.
The simultaneous inversion of velocity model and microseismic event location s
still faces the risk of coupling on the condition of fitting the observed travel times,
some systematic deviations may be unavoidable. To avoid the errors in microseismic
event location results, an Incremental Pseudo-Master (IPM) method was proposed in
this paper. It combines the advantage of the master-event location method and the
Bayesian inference. In the IPM method, the accuracy of the microseismic event
locations and the velocity model were iteratively improved, and the number of model
parameters was reduced to improve the inversion stability. The synthetic and field tests all represented that the IPM method was suitable for velocity optimization under
different geological conditions, and the microseismic event location accuracy can be
largely improved.
When the strong anisotropy in the hydraulic fracturing area seriously affects the
location accuracy of the microseismic events, we deduced the anisotropy parameters
of VTI (Vertical Transverse Isotropy) media based on the IPM method. In the fixed
dimensional inversion, the IPM method successfully predicted the uncertainty of the
anisotropic parameters. In the transdimensional inversion, the IPM method
successfully obtained the sparse equivalent anisotropic velocity model, which
effectively improved the location accuracy of the microseismic events.
To solve the problem that the MCMC (Markov Chain Monte Carlo) sampling
method in Bayesian inversion needs many iterations and the calculation process needs
a lot of time, we developed an efficient raytracing algorithm for isotropic and VTI
media. It combined the simple principle of the shooting method and the strong
applicability of the shortest-path method. The algorithm was simple and efficient, and
the high precision travel times and ray paths can be deduced from sparse nodes. It
was beneficial to efficiently obtain the optimized velocity model, which facilitates
real-time microseismic monitoring.
The velocity optimized method proposed in this paper overcomes the problems
of the traditional method, such as less constraint information, poor applicability of
velocity model, large event location error, and low inversion efficiency. It is suitable
for microseismic monitoring under complex geological conditions . The location error
is reduced to ten meters, and the inversion efficiency is improved by tens of times . It
is suitable for field hydraulic fracturing production and provides a strong guarantee
for improving unconventional energy oil and gas recovery.

关键词
其他关键词
语种
中文
培养类别
联合培养
入学年份
2017
学位授予年份
2022-01
参考文献列表

[1] 邹才能. 非常规油气地质学[M]. 北京:地质出版社,2014:11-23.
[2] Board N E. A primer for understanding Canadian shale gas[R]. Canada, 2009: 1 -10.
[3] 王鸿勋. 水力压裂原理[M]. 北京:石油工业出版社,1987:1-4.
[4] 蒋星达. 微地震井中监测速度模型校正方法和资料解释[D]. 合肥:中国科学
技术大学,2017:5-10.
[5] 彪仿俊,刘合,张士诚. 水力压裂水平裂缝影响参数的数值模拟研究[J]. 工程
力学,2011,28(10):228-235.
[6] 江海宇. 油田压裂微地震地面监测速度模型校正及定位研究[D]. 吉林:吉林
大学,2016:1-8.
[7] 梁兵,朱广生. 油气田勘探开发中的微震监测方法[M]. 北京:石油工业出版
社,2004:11-31.
[8] Shawn C M, Theodore I U. The role of passive microseismic monitoring in the
instrumented oil field[J]. Leading Edge, 2001, 20(06): 636-639.
[9] Power D V, Schuster C L, Hay R, et al. Detection of hydraulic fracture orientation
and dimensions in cased wells[J]. Journal of Petroleum Technology, 1976, 28(09):
1116-1124.
[10] Varnes D J. Landslide Analysis and Control[J]. Slope Movement Types &
Processes, 1978, 8(03): 12-15.
[11] 刘劲松,王赟,姚振兴. 微地震信号到时自动拾取方法[J]. 地球物理学报,
2013,56(05):1660-1666.
[12] Wu S, Wang Y, Zhan Y, et al. Automatic microseismic event detection by band -
limited phase-only correlation[J]. Physics of the Earth and Planetary Interiors,
2016, 261: 3-16.
[13] 余洋洋,梁春涛,康亮,等. 微地震地面监测系统的优化设计[J].石油地球
物理勘探,2017,52(5):974-983.
[14] 王亚娟,李怀良,庹先国,等. 一种强噪声微地震信号P 震相初至拾取的新
方法[J]. 石油物探,2020,59(03):356-365.
[15] 谭玉阳,何川,张洪亮. 基于初至旅行时差的微地震速度模型反演[J]. 石油地
球物理勘探,2015,50(01):54-60.
[16] 崔庆辉,尹成,刁瑞,等. 地面微地震监测速度模型优化方法研究[J]. 地球物
理学进展,2018,33(01):163-167.
[17] Xue Q, Wang Y, Zhan Y, et al. An efficient GPU implementation for locating micro -
seismic sources using 3D elastic wave time-reversal imaging[J]. Computers &
Geosciences, 2015, 82: 89-97.
[18] 王璐琛,常旭,王一博. 干涉走时微地震震源定位方法[J]. 地球物理学报,
2016,59(8):3037-3045.
[19] Zheng Y, Wang Y, Chang X. Wave equation based microseismic source location
and velocity inversion[J]. Physics of the Earth and Planetary Interiors, 2016, 261:
46-53.
[20] 田宵. 井下微地震监测方法研究[D]. 合肥:中国科学技术大学,2018:1-10.
[21] Yu Y, Liang C, Wu F, et al. On the accuracy and efficiency of the joint source
scanning algorithm for hydraulic fracturing monitoring[J]. Geophysics, 2018,
83(5): KS77-KS85.
[22] 曾志毅,张建中. 利用微地震记录互相关成像的震源定位方法[J]. 石油地球
物理勘探,2020,55(02):360-372.
[23] 谭玉阳,胡隽,张海江,等. 利用全波形匹配方法确定水力压裂诱发地震震
源机制[J]. 地球物理学报,2019,62(11):4417-4436.
[24] 李晗,常旭. 微地震震源机制研究进展[J]. 中国科学:地球科学,2021,51(03):
325-338.
[25] 张宪旭,杨光明,蔡文芮,等. 煤层下部地层地震成像研究[J]. 煤田地质与勘
探,2015,43(02):83-85.
[26] 张永成,郝海金,李兵,等. 煤层气水平井微地震成像裂缝监测应用研究[J].
煤田地质与勘探,2018,46(04):67-71.
[27] Maxwell S. Microseismic imaging of hydraulic fracturing[M]. Houston: Soci ety
of Exploration Geophysicists, 2014: 1-11.
[28] 李仕彦. 水力压裂地面微地震监测系统及震源定位方法研究[D]. 成都:西南
石油大学,2013:6-10.
[29] Warpinski N R, Sullivan R B, Uhl J E, et al. Improved Microseismic Fracture
Mapping Using Perforation Timing Measurements for Velocity Calibration[J]. SPE
Journal, 2005, 3: 14-23.
[30] Pei D, Quirein J A, Cornish B E, et al. SPWLA 49th annual logging symposium[C].
Austin: Petroleum Press, 2008: 1-9.
[31] Pavlis G L. Appraising earthquake hypocenter location errors: A complete,
practical approach for single-event locations[J]. Bulletin of the Seismological
Society of America, 1986, 76(6): 1699-1717.
[32] 宋维琪,冯超. 微地震有效事件自动识别与定位方法[J]. 石油地球物理勘探,
2013,48(2):283-288.
[33] Pei D, Quirein J A, Cornish B E, et al. Velocity calibration for microseismic
monitoring: A very fast simulated annealing (VFSA) approach for joint-objective
optimization[J]. Geophysics, 2009, 74(6): WCB47-WCB55.
[34] Tian X, Zhang W, Zhang J. Cross double-difference inversion for microseismic
event location using data from a single monitoring well[J]. Geophysics, 2016,
81(5): KS183-KS194.
[35] 隋微波,刘荣全,崔凯. 水力压裂分布式光纤声波传感监测的应用与研究进
展[J]. 中国科学:技术科学,2021,51(4):1-17.
[36] Rentsch S, Buske S, S. Lüth, et al. 67th EAGE Conference & Exhibition[C]. Paris:
European Association of Geoscientists & Engineers, 2005: cp -1-00596.
[37] Haldorsen B U, Brooks N J, Milenkovic M. Locating microseismic sources using
migration-based deconvolution[J]. Geophysics, 2013, 78(5): KS73-KS84.
[38] Tian X, Zhang W, Zhang J. Cross double‐difference inversion for simultaneous
velocity model update and microseismic event location[J] . Geophysical
Prospecting, 2017, 65(5), 259-273.
[39] Warpinski N R, Du J. SPE hydraulic fracturing technology conference[C].Houston:
Society of Petroleum Engineers, 2013: 1-15.
[40] Wilson S, Raymer D, Jones R. SEG Annual Meeting Technical Program Expanded
Abstracts[C]. Houston: Society of Petroleum Engineers, 2003: 1565 -1568.
[41] Zhou H W. Multiscale traveltime tomography[J]. Geophysics, 2003, 68(5): 1639 -
1649.
[42] Zhou H W. Multiscale deformable-layer tomography[J]. Geophysics, 2006, 71(3):
R11-R19.
[43] Li J, Zhang H, Rodi W L, et al. Joint microseismic location and anisotropic
tomography using differential arrival times and differential backazimuths[J].
Geophysical Journal International, 2013, 195(3): 1917-1931.
[44] Li J, Li C, Morton S A, et al. Microseismic joint location and a nisotropic velocity
inversion for hydraulic fracturing in a tight Bakken reservoir[J]. Geophysics, 2014,
79(5): 111-C122.
[45] Grechka V, Yaskevich S. Azimuthal anisotropy in microseismic monitoring: A
Bakken case study[J]. Geophysics, 2014, 79(1): KS1-KS12.
[46] Bardainne T, Gaucher E. Constrained tomography of realistic velocity models in
microseismic monitoring using calibration shots[J]. Geophysical Prospecting,
2010, 58(5): 739-753.
[47] 蒋星达,张伟,王仔轩,等. 基于总变分(TV)正则化约束的微地震井下速
度模型校正[J]. 物探化探计算技术,2018,040(005):559-564.
[48] Grechka V, Li Z, Howell B, et al. High-resolution microseismic imaging[J].
Leading Edge, 2017, 36(10): 822-828.
[49] Lin Y, Zhang H, Jia X. Target-oriented imaging of hydraulic fractures by applying
the staining algorithm for downhole microseismic migration[J]. Jo urnal of Applied
Geophysics, 2018, 150: 278-283.
[50] Warpinski N. Microseismic Monitoring: Inside and Out[J]. Journal of Petroleum
Technology, 2009, 61(11): 80-85.
[51] Erwemi A, Walsh J, Bennett L, et al. SEG Annualing Meeting Technical Program
Expanded Abstracts[C]. Houston: Society of Petroleum Engineers, 2010: 508-512.
[52] Maxwell S C, Bennett L, Jones M. SEG Annualing Meeting Technical Program
Expanded Abstracts[C]. Houston: Society of Petroleum Engineers, 2010: 2130 -
2134.
[53] Woerpel C. SEG Annualing Meeting Technical Program Expanded Abstracts[C].
Houston: Society of Petroleum Engineers, 2010: 2135-2139.
[54] Grechka V, Singh P, Das I. Estimation of effective anisotropy simultaneously with
locations of microseismic events[J]. Geophysics, 2011, 76(6): WC143 -WC155.
[55] Pei D, Carmichael J, Waltman C, et al. SEG Annualing Meeting Technical Program
Expanded Abstracts[C]. Houston: Society of Petroleum Engineers, 2014: 2278 -
2282.
[56] Zhang Z, Du J, Gao F. Simultaneous inversion for microseismic event location and
velocity model in Vaca Muerta Formation[J]. Geophysics, 2018, 83(3): KS23-
KS34.
[57] Zhang Z, Du J, Mavko G M. Reservoir characterization using perforation shots:
Anisotropy, attenuation and uncertainty analysis[J]. Geophysical Journal
International, 2019, 216(1): 470-485.
[58] Pirli M, Heiner I. Computational seismology: a practical introduction[J]. Journal
of Seismology, 2017, 21(3): 567-570.
[59] Cerveny V. Seismic ray theory[M]. London: Cambridge University Press, 2005:
14-32.
[60] 张雁雁. 水平层状VTI 介质两点射线追踪方法研究[D]. 哈尔滨:哈尔滨工业
大学,2020:20-26.
[61] 邴琦,孙章庆,韩复兴,等. 地震波射线追踪方法综述——方法、分类、发展
现状与趋势[J]. 地球物理学进展,2020,35(02):536-547.
[62] Julian B, Gubbins D. Three-Dimensional Seismic Ray Tracing[J]. Journal of
Geophysics, 1977, 43(1): 95-113.
[63] Moser T J. Shortest path calculation of seismic ray[J]. Geophysics, 1991, 56(1):
59-67.
[64] Schneider W A J, Ranzinger K A, Balch A H, et al.A dynamic programming
approach to first arrival traveltime computation in media with arbitrarily
distributed velocities[J]. Geophysics, 1991, 57(1): 39 -50.
[65] Asakawa E, Kawanaka T. Seismic ray tracing using linear traveltime
interpolation[J].Geophysical Prospecting, 1993, 41(1): 99-111.
[66] Fischer R, Lees J M. Shortest path ray tracing with sparse graphs[J]. Geophysics,
1993, 58(7): 987-996.
[67] 张建中,陈世军,徐初伟. 动态网络最短路径射线追踪[J]. 地球物理学报,
2004(05):900-905.
[68] 王辉,常旭. 基于图形结构的三维射线追踪方法[J]. 地球物理学报, 2000(04):
534-541.
[69] 张美根,程冰洁,李小凡,等. 一种最短路径射线追踪的快速算法[J]. 地球物
理学报,2006(05):1467-1474.
[70] 赵后越,张美根. 起伏地表条件下各向异性地震波最短路径射线追踪[J]. 地
球物理学报,2014,57(09):2910-2917.
[71] Bai C Y, Greenhalgh S, Zhou B. 3D ray tracing using a modified shortest -path
method[J]. Geophysics, 2007, 72(4): T27-T36.
[72] Bai C Y, Huang G J, Li X L, et al. Ray tracing of multiple
transmitted/reflected/converted waves in 2-D/3-D layered anisotropic TTI media
and application to crosswell traveltime tomography[J]. Geophysical Journal
International, 2013, 195(2), 1068-1087.
[73] Bai C Y, Li X L, Wang Q L, et al. Multiple arrival tracking within irregular
triangular or tetrahedral cell model[J]. Journal of Geophysics and Engineering,
2012, 9(1): 29-38.
[74] 王华忠,方正茂,徐兆涛,等. 地震波旅行时计算[J]. 石油地球物理勘探,1999,
34(02):155-163.
[75] 张赛民,周竹生,陈灵君,等. 对旅行时进行抛物型插值的地震射线追踪方
法[J]. 地球物理学进展,2007(01):43-48.
[76] 梅胜全,邓飞,钟本善,等. 基于改进的双线性旅行时插值的三维射线追踪
[J]. 物探化探计算技术,2010,32(02):152-157.
[77] 黄靓,黄政宇. 线性插值射线追踪的改进方法[J]. 湘潭大学自然科学学报,
2002(04):105-108.
[78] 王琦,朱盼,叶佩,等. 起伏地表地震波旅行时混合网格线性插值射线追踪
计算方法[J]. 石油地球物理勘探,2018,53(01):35-46.
[79] 王家映. 地球物理资料非线性反演方法讲座(一)地球物理反演问题概述[J].
工程地球物理学报,2007,4(1):1-3.
[80] 王家映. 地球物理反演理论[M]. 北京:高等教育出版社,2002:113-132.
[81] Aster R C, Borchers B, Thurber C H. Parameter estimation and inverse
problems[M]. Elsevier, 2018: 93-127.
[82] Parker R L. Understanding Inverse Theory[J]. Annual Review of Earth & Planetary
Sciences, 1977, 5(1): 35-64.
[83] Tarantola A. Inverse problem theory and methods for model parameter
estimation[M]. Philadelphia: Society for Industrial and Applied Mathematics,
2005: 51-54.
[84] Sen M K, Stoffa P L. Bayesian inference, Gibbs' sampler and uncertainty
estimation in geophysical inversion[J]. Geophysical Prospecting, 1996, 44(2):
313-350.
[85] Ray A, Key K. Bayesian inversion of marine CSEM data with a transdimensional
self parametrizing algorithm[J]. Geophysical Journal International, 2012, 191(3):
1135-1151.
[86] Bayes T. An essay towards solving a problem in the doctrine of chances[J].
Philosophical transactions of the Royal Society of London, 1763(53): 370 -418.
[87] Laplace P S. A philosophical essay on probabilities[M]. Hoboken: Wiley, 1902:43-56.
[88] Guo R, Dosso S E, Liu J, et al. Non-linearity in Bayesian 1-D magnetotelluric
inversion[J]. Geophysical Journal International, 2011, 185(2): 663 -675.
[89] 印兴耀,周琪超,宗兆云,等. 基于t 分布为先验约束的叠前AVO 反演[J].
石油物探,2014,53(01):84-92.
[90] 袁成,李景叶,陈小宏. 地震岩相识别概率表征方法[J]. 地球物理学报,2016,
59(01):287-298.
[91] Kolbjørnsen O, Buland A, Hauge R, et al. Bayesian seismic inversion for
stratigraphic horizon, lithology, and fluid prediction[J]. Geophysics, 2020, 85(3):
R207-R221.
[92] Mosegaard K, Tarantola A. Monte Carlo sampling of solutions to inverse
problems[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B7): 12431 -
12447.
[93] Schott J J, Roussignol M, Menvielle M, et al. Bayesian inversion with Markov
chains—II. The one-dimensional DC multilayer case[J]. Geophysical Journal
International, 1999, 138(3): 769-783.
[94] Buland A, Kolbjørnsen O. Bayesian inversion of CSEM and magnetotelluric
data[J]. Geophysics, 2012, 77(1): E33-E42.
[95] Grana D. Bayesian petroelastic inversion with multiple prior models[J].
Geophysics, 2020, 85(5): M57-M71.
[96] Yustres Á, Asensio L, Alonso J, et al. A review of Markov Chain Monte Carlo and
information theory tools for inverse problems in subsurface flow[J].
Computational Geosciences, 2012, 16(1): 1-20.
[97] Robert C P, Chopin N, Rousseau J. Harold Jeffreys’s theory of probability
revisited[J]. Statistical Science, 2009, 24(2): 141-172.
[98] Ulrych T J, Sacchi M D, Woodbury A. A Bayes tour of inversion: A tutorial[J].
Geophysics, 2001, 66(1): 55-69.
[99] Malinverno A, Briggs V A. Expanded uncertainty quantification in inverse
problems: Hierarchical Bayes and empirical Bayes[J]. Geophysics, 2004, 69(4):
1005-1016.
[100] 肖爽,巴晶,符力耘,等. 基于高斯先验和马尔科夫随机场约束的非线性叠
前地震反演研究及应用[J]. 地球物理学进展,2020,35(6):2250-2258.
[101] 胡华锋,印兴耀,吴国忱. 基于贝叶斯分类的储层物性参数联合反演方法[J].
石油物探,2012,51(03):225-232.
[102] 刘彦,吕庆田,李晓斌,等. 基于模型降阶的贝叶斯方法在三维重力反演中
的实践[J]. 地球物理学报,2015,58(12):4727-4739.
[103] 杨培杰,印兴耀. 非线性二次规划贝叶斯叠前反演[J]. 地球物理学报,2008,
51(06):1876-1882.
[104] 张世鑫,印兴耀,张繁昌. 基于三变量柯西分布先验约束的叠前三参数反演
方法[J]. 石油地球物理勘探,2011,46(05):737-743.
[105] 赵小龙,吴国忱,曹丹平. 多尺度地震资料稀疏贝叶斯联合反演方法[J]. 石油
地球物理勘探,2016,51(06):1156-1163.
[106] Alemie W, Sacchi M D. High-resolution three-term AVO inversion by means of a
Trivariate Cauchy probability distribution[J]. Geophysics, 2011, 76(3): R43 -R55.
[107] Yin X, Zhang S. Bayesian inversion for effective pore-fluid bulk modulus based
on fluid-matrix decoupled amplitude variation with offset approximation[J].
Geophysics, 2014, 79(5): R221-R232.
[108] Theune U, Jensås I Ø, Eidsvik J. Analysis of prior models for a blocky inversion of seismic AVA data[J]. Geophysics, 2010, 75(3): C25-C35.
[109] Visser G, Guo P, Saygin E. Bayesian transdimensional seismic full-waveform inversion with a dipping layer parameterization[J]. Geophysics, 2019, 84(6): R845-R858.
[110] 何沛阳,卢建旗,李山有,等. 地震预警震级估算方法的不确定性评估模型
——以τ~p_(max)法为例[J]. 内陆地震,2020,34(04):317-329.
[111] Guitton A, Symes W W. Robust inversion of seismic data using the Huber norm[J]. Geophysics, 2003, 68(4): 1310-1319.
[112] 印海燕. AVO 叠前反演方法研究[D]. 青岛:中国石油大学,2008:14-22.
[113] Avseth P, Mukerji T, Jørstad A, et al. Seismic reservoir mapping from 3 -D AVO in a North Sea turbidite system[J]. Geophysics, 2001, 66(4): 1157-1176.
[114] Eidsvik J, Avseth P, Omre H, et al. Stochastic reservoir characterization using prestack seismic data[J]. Geophysics, 2004, 69(4): 978 -993.
[115] 田军,吴国忱,宗兆云. 鲁棒性AVO 三参数反演方法及不确定性分析[J]. 石
油地球物理勘探,2013,48(03):443-449.
[116] de Figueiredo L P, Grana D, Roisenberg M, et al. Multimodal Markov chain Monte Carlo method for nonlinear petrophysical seismic inversion[J]. Geophysics, 2019, 84(5): M1-M13.
[117] 姚铭,高刚,胡瑞卿,等. 一种改进的贝叶斯反演算法[J]. 地球物理学进展,2020,35(05):1911-1918.
[118] Scales J A, Snieder R. What is noise?[J]. Geophysics, 19 98, 63(4): 1122-1124.
[119] Minson S E, Simons M, Beck J L, et al. Bayesian inversion for finite fault earthquake source models–II: the 2011 great Tohoku-oki, Japan earthquake[J].
Geophysical Journal International, 2014, 198(2): 922-940.
[120] 黄捍东,赵迪,任敦占,等. 基于贝叶斯理论的薄层反演方法[J]. 石油地球物理勘探,2014,46(06):919-924.
[121] 苑闻京. 叠前反演和地震吸收技术在复杂天然气藏地震预测中的应用[J]. 地
球物理学进展,2012,27(03):1107-1115.
[122] 张繁昌,肖张波,印兴耀. 地震数据约束下的贝叶斯随机反演[J]. 石油地球物
理勘探,2014,49(01):176-182.
[123] Mallick S. Model-based inversion of amplitude-variations-with-offset data using a
genetic algorithm[J]. Geophysics, 1995, 60(4): 939-954.
[124] 余小东, 陆从德, 王绪本. 时间域航空电磁数据的自适应变维贝叶斯反演研
究[J]. 地球物理学进展,2020,35(05):2023-2032.
[125] Duijndam A J W. Bayesian estimation in seismic inversion. Part I:princiles[J].
Geophysical Prospecting, 1988, 36(8): 878-898.
[126] 刘艳杰. 参数反演的贝叶斯方法及其应用研究[D]. 淄博:山东理工大学,2020:
34-40
[127] Downton J E, Lines L R. SEG Annual Meeting Technical Program Expanded
Abstracts[C]. Houston: Society of Exploration Geophysicists, 2001, 251 -254.
[128] Kjønsberg H, Hauge R, Kolbjørnsen O, et al. Bayesian Monte Carlo meth od for
seismic predrill prospect assessment[J]. Geophysics, 2010, 75(2): O9 -O19.
[129] Michalak A M, Hirsch A, Bruhwiler L, et al. Maximum likelihood estimation of
covariance parameters for Bayesian atmospheric trace gas surface flux
inversions[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D24107):
1-16.
[130] Zhu H, Li S, Fomel S, et al. A Bayesian approach to estimate uncertainty for full -
waveform inversion using a priori information from depth migration[J].
Geophysics, 2016, 81(5): R307-R323.
[131] Guo R, Dosso S E, Liu J, et al. Frequency-and spatial-correlated noise on layered
magnetotelluric inversion[J]. Geophysical Journal International, 2014, 199(2): 1205-1213.
[132] Oliver D S, Alfonzo M. Calibration of imperfect models to biased observations[J].
Computational Geosciences, 2018, 22(1): 145-161.
[133] Sambridge M. Geophysical inversion with a neighbourhood algorithm—I.
Searching a parameter space[J]. Geophysical journal international, 1999, 138(2):
479-494.
[134] Malinverno A, Parker R L. Two ways to quantify uncertainty i n geophysical
inverse problems[J]. Geophysics, 2006, 71(3): W15-W27.
[135] Dettmer J, Molnar S, Steininger G, et al. Transdimensional inversion of
microtremor array dispersion data with hierarchical autoregressive error models[J].
Geophysical Journal International, 2012, 188(2): 719-734.
[136] Irving J, Singha K. Stochastic inversion of tracer test and electrical geophysical
data to estimate hydraulic conductivities[J]. Water Resources Research, 2010,
46(11): 1-16
[137] Grana D, Passos de Figueiredo L, Azevedo L. Uncertainty quantification in
Bayesian inverse problems with model and data dimension reduction[J].
Geophysics, 2019, 84(6): M15-M24.
[138] Bodin T, Sambridge M, Rawlinson N, et al. Transdimensional tomography with
unknown data noise[J]. Geophysical Journal International, 2012, 189(3): 1536-
1556.
[139] Sambridge M, Gallagher K, Jackson A, et al. Transdimensional inverse problems,
model comparison and the evidence[J]. Geophysical Journal International, 2006,
167(2): 528-542.
[140] Chen J, Kemna A, Hubbard S S. A comparison between Gauss -Newton and
Markov-chain Monte Carlo–based methods for inverting spectral inducedpolarization
data for Cole-Cole parameters[J]. Geophysics, 2008, 73(6): F247-
F259.
[141] Bodin T, Sambridge M, Gallagher K. A self-parametrizing partition model
approach to tomographic inverse problems[J]. Inverse Problems, 2009, 25(5):
055009.
[142] Bodin T, Sambridge M, Tkalčić H, et al. Transdimensional inversion of receiver
functions and surface wave dispersion[J]. Journal of Geophysical Research: Solid
Earth, 2012, 117(B02301): 1-24.
[143] 尹彬,胡祥云. 非线性反演的贝叶斯方法研究综述[J]. 地球物理学进展,2016,31(03):1027-1032.
[144] 李承瑾,郭荣文,柳建新,等. 跨维贝叶斯反演在地球物理中的研究进展[J].
工程地球物理学报,2018,15(04):501-508.
[145] Sambridge M, Bodin T, Gallagher K, et al. Transdimensional inference in the
geosciences[J]. Philosophical Transactions of the Ro yal Society A: Mathematical,
Physical and Engineering Sciences, 2013, 371(1984): 20110547.
[146] Akaike H. Likelihood and the Bayes procedure[J]. Trabajos de estadística y de
investigación operativa, 1980, 31(1): 143-166.
[147] Yabuki T, Matsu'Ura M. Geodetic data inversion using a Bayesian information
criterion for spatial distribution of fault slip[J]. Geophysical Journal International,
1992, 109(2): 363-375.
[148] Fukahata Y, Yagi Y, Matsu'ura M. Waveform inversion for seismic source processes
using ABIC with two sorts of prior constraints: Comparison between proper and
improper formulations[J]. Geophysical research letters, 2003, 30(6): 38-1 – 38-4.
[149] Xiong Z, Zhuang J, Zhou S, et al. Crustal strain-rate fields estimated from GNSS
data with a Bayesian approach and its correlation to seismic activity in Mainland
China[J]. Tectonophysics, 2021, 815: 229003.
[150] Duijndam A J W. Bayesian estimation in seismic inversion. Part II: Uncertainty
analysis[J]. Geophysical Prospecting, 1988, 36(8): 899-918.
[151] Grana D. Bayesian linearized rock-physics inversion[J]. Geophysics, 2016, 81(6):
D625-D641.
[152] Buland A, Omre H. Bayesian linearized AVO inversion[J]. Geophysics, 2003,
68(1): 185-198.
[153] Tarantola A, Valette B. Inverse problems= quest for information[J]. Journal of
geophysics, 1982, 50(1): 159-170.
[154] Metropolis N, Ulam S. The monte carlo method[J]. Journal of the American
statistical association, 1949, 44(247): 335-341.
[155] Metropolis N, Rosenbluth A W, Rosenbluth M N, et al. Equation of state
calculations by fast computing machines[J]. The journal of chemical physics, 1953,
21(6): 1087-1092.
[156] Hastings W K. Monte Carlo sampling methods using Markov chains and their
applications[J]. Biometrika, 1970, 57(1): 97-109.
[157] Smith A F M, Roberts G O. Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods[J]. Journal of the Royal Statistical
Society: Series B (Methodological), 1993, 55(1): 3-23.
[158] Green P J. Reversible jump Markov chain Monte Carlo computation and Bayesian
model determination[J]. Biometrika, 1995, 82(4): 711-732.
[159] 张广智,王丹阳,印兴耀,等. 基于MCMC 的叠前地震反演方法研究[J]. 地
球物理学报,2011,54(11):2926-2932.
[160] 王朋岩,李耀华,赵荣. 叠后MCMC 法岩性反演算法研究[J]. 地球物理学进
展,2015,30(04):1918-1925.
[161] Bagnardi M, Hooper A. Inversion of surface deformation data for rapid estimates
of source parameters and uncertainties: A Bayesian approach[J]. Geochemistry,
Geophysics, Geosystems, 2018, 19(7): 2194-2211.
[162] Grandis H, Menvielle M, Roussignol M. Bayesian inversion with Markov chains—
I. The magnetotelluric one-dimensional case[J]. Geophysical Journal International,
1999, 138(3): 757-768.
[163] Ulvmoen M, Omre H. Improved resolution in Bayesian lithology/fluid inversion
from prestack seismic data and well observations: Part 1—Methodology[J].
Geophysics, 2010, 75(2): R21-R35.
[164] Schwarz G. Estimating the dimension of a model[J]. Annals of statistic s, 1978,
6(2): 461-464.
[165] Malinverno A. Parsimonious Bayesian Markov chain Monte Carlo inversion in a
nonlinear geophysical problem[J]. Geophysical Journal International, 2002, 151(3):
675-688.
[166] Zhu D, Gibson R. Seismic inversion and uncertainty quantificati on using
transdimensional Markov chain Monte Carlo method[J]. Geophysics, 2018(83):
R321-R334.
[167] Vrugt J A, Ter Braak C J F, Clark M P, et al. Treatment of input uncertainty in
hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo
simulation[J]. Water Resources Research, 2008, 44(12): W00B09.
[168] Laloy E, Vrugt J A. High‐dimensional posterior exploration of hydrologic models
using multiple‐try DREAM (ZS) and high‐performance computing[J]. Water
Resources Research, 2012, 48(1): W01526.
[169] Ray A, Alumbaugh D L, Hoversten G M, et al. Robust and accelerated Bayesian
inversion of marine controlled-source electromagnetic data using parallel
tempering[J]. Geophysics, 2013, 78(6): E271-E280.
[170] Sambridge M. A parallel tempering algorithm for probabilistic sampling and
multimodal optimization[J]. Geophysical Journal International, 2014, 196(1): 357 -
374.
[171] Bodin T, Sambridge M. Seismic tomography with the reversible jump algorithm[J].
Geophysical Journal International, 2009, 178(3), 1411-1436.
[172] Hong T, Sen M K. A new MCMC algorithm for seismic waveform inversion and
corresponding uncertainty analysis[J]. Geophysical Journal International, 2009,
177(1): 14-32.
[173] 王文涛,朱培民. 地震储层预测中贝叶斯反演方法的研究[J]. 石油天然气学
报,2009(05):263-266.
[174] Chen J, Kemna A, Hubbard S S. A comparison between Gauss-Newton and
Markov-chain Monte Carlo–based methods for inverting spectral inducedpolarization
data for Cole-Cole parameters[J]. Geophysics, 2008, 73(6): F247-
F259.
[175] Sacchi M D, Ulrych T J. High-resolution velocity gathers and offset space
reconstruction[J]. Geophysics, 1995, 60(4): 1169-1177.
[176] Agostinetti N P, Malinverno A. Receiver function inversion by transdimensional
Monte Carlo sampling[J]. Geophysical Journal International, 2010, 181(2): 858 -
872.
[177] Stein S, Wysession M. An introduction to seismology, earthquakes, and earth
structure[M]. Blackwell Publishing Ltd, 2003: 29-30.
[178] Markov G, Mukerji T, Dvorkin J. The Rock Physics Handbook[M]. Canbridge
University Press, 2003:24-30, 83-86.
[179] Dijkstra E W. A note on two problems in connexion with graphs[J]. Numerische
Mathematik, 1959, 1(1): 269-271.
[180] 刘玲君,谢中华,杨萃. 基于边界线性走时插值的射线追踪算法[J]. 华南理工
大学学报(自然科学版),2014,42(05):23-28.
[181] Thomsen L. Weak elastic anisotropy[J]. Geophysics, 1986, 51(10): 1954 -1966.
[182] Tsvankin I. Anisotropic parameters and P-wave velocity for orthorhombic media[J].
Geophysics, 1997, 62(4): 1292-1309.
[183] Sena A G. Seismic traveltime equations for azimuthally anisotropic and isotropic
media: Estimation of interval elastic properties[J]. Geophysics, 1991, 56(12): 2090-2101.
[184] Byun B S, Corrigan D, Gaiser J E. Anisotropic velocity analysis for lithology
discrimination[J]. Geophysics, 1989, 54(12): 1564-1574.
[185] 赵爱华,丁志峰. 一种弱各向异性介质地震波群速度的近似表示新方法[J].
地球物理学进展,2005(04):916-919.
[186] Geiger L. Probability method for the determination of earthquake epicenters from
the arrival time only[J]. Bull. St. Louis Univ, 1912, 8(1): 56-71.
[187] Bouchaala F, Vavryčuk V, Fischer T. Accuracy of the master-event and doubledifference
locations: Synthetic tests and application to seismicity in West Bohemia,
Czech Republic[J]. Journal of seismology, 2013, 17(3): 841-859.
[188] Waldhauser F, Ellsworth W L. A double-difference earthquake location algorithm: Method and application to the northern Hayward fault, California[J]. Bulletin of the Seismological Society of America, 2000, 90(6): 1353 -1368.
[189] Got J L, Okubo P. New insights into Kilauea's volcano dynamics brought by large -scale relative relocation of microearthquakes[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B7): 5-1-5-13.
[190] Golub G H, Reinsch C. Singular value decomposition and least squ ares solutions[M]. Berlin: Linear algebra, 1971: 134-151.
[191] Jansky J, Plicka V, Eisner L. Feasibility of joint 1D velocity model and event location inversion by the neighbourhood algorithm[J]. Geophysical Prospecting, 2010, 58(2): 229-234.
[192] Gei D, Eisner L, Suhadolc P. Feasibility of estimating vertical transverse isotropy from microseismic data recorded by surface monitoring arrays[J]. Geophysics, 2011, 76(6): WC117-WC126.
[193] Jing H, Zhou H W, Li A. Quantification of the impact of seismic anisotropy in microseismic location[J]. International Journal of Geosciences, 2016, 7(07): 884 -890.
[194] Gajek W, Malinowski M. Errors in microseismic events locations introduced by neglecting anisotropy during velocity model calibration in downhole monitoring[J].
Journal of Applied Geophysics, 2021, 184: 104222.

所在学位评定分委会
地球与空间科学系
国内图书分类号
P315.08
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/330472
专题理学院_地球与空间科学系
推荐引用方式
GB/T 7714
蒋星达. 微地震速度模型和高精度定位贝叶斯反演方法[D]. 深圳. 哈尔滨工业大学,2021.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11749289-蒋星达-地球与空间科学(15026KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[蒋星达]的文章
百度学术
百度学术中相似的文章
[蒋星达]的文章
必应学术
必应学术中相似的文章
[蒋星达]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。