[1] 邹才能. 非常规油气地质学[M]. 北京:地质出版社,2014:11-23.
[2] Board N E. A primer for understanding Canadian shale gas[R]. Canada, 2009: 1 -10.
[3] 王鸿勋. 水力压裂原理[M]. 北京:石油工业出版社,1987:1-4.
[4] 蒋星达. 微地震井中监测速度模型校正方法和资料解释[D]. 合肥:中国科学
技术大学,2017:5-10.
[5] 彪仿俊,刘合,张士诚. 水力压裂水平裂缝影响参数的数值模拟研究[J]. 工程
力学,2011,28(10):228-235.
[6] 江海宇. 油田压裂微地震地面监测速度模型校正及定位研究[D]. 吉林:吉林
大学,2016:1-8.
[7] 梁兵,朱广生. 油气田勘探开发中的微震监测方法[M]. 北京:石油工业出版
社,2004:11-31.
[8] Shawn C M, Theodore I U. The role of passive microseismic monitoring in the
instrumented oil field[J]. Leading Edge, 2001, 20(06): 636-639.
[9] Power D V, Schuster C L, Hay R, et al. Detection of hydraulic fracture orientation
and dimensions in cased wells[J]. Journal of Petroleum Technology, 1976, 28(09):
1116-1124.
[10] Varnes D J. Landslide Analysis and Control[J]. Slope Movement Types &
Processes, 1978, 8(03): 12-15.
[11] 刘劲松,王赟,姚振兴. 微地震信号到时自动拾取方法[J]. 地球物理学报,
2013,56(05):1660-1666.
[12] Wu S, Wang Y, Zhan Y, et al. Automatic microseismic event detection by band -
limited phase-only correlation[J]. Physics of the Earth and Planetary Interiors,
2016, 261: 3-16.
[13] 余洋洋,梁春涛,康亮,等. 微地震地面监测系统的优化设计[J].石油地球
物理勘探,2017,52(5):974-983.
[14] 王亚娟,李怀良,庹先国,等. 一种强噪声微地震信号P 震相初至拾取的新
方法[J]. 石油物探,2020,59(03):356-365.
[15] 谭玉阳,何川,张洪亮. 基于初至旅行时差的微地震速度模型反演[J]. 石油地
球物理勘探,2015,50(01):54-60.
[16] 崔庆辉,尹成,刁瑞,等. 地面微地震监测速度模型优化方法研究[J]. 地球物
理学进展,2018,33(01):163-167.
[17] Xue Q, Wang Y, Zhan Y, et al. An efficient GPU implementation for locating micro -
seismic sources using 3D elastic wave time-reversal imaging[J]. Computers &
Geosciences, 2015, 82: 89-97.
[18] 王璐琛,常旭,王一博. 干涉走时微地震震源定位方法[J]. 地球物理学报,
2016,59(8):3037-3045.
[19] Zheng Y, Wang Y, Chang X. Wave equation based microseismic source location
and velocity inversion[J]. Physics of the Earth and Planetary Interiors, 2016, 261:
46-53.
[20] 田宵. 井下微地震监测方法研究[D]. 合肥:中国科学技术大学,2018:1-10.
[21] Yu Y, Liang C, Wu F, et al. On the accuracy and efficiency of the joint source
scanning algorithm for hydraulic fracturing monitoring[J]. Geophysics, 2018,
83(5): KS77-KS85.
[22] 曾志毅,张建中. 利用微地震记录互相关成像的震源定位方法[J]. 石油地球
物理勘探,2020,55(02):360-372.
[23] 谭玉阳,胡隽,张海江,等. 利用全波形匹配方法确定水力压裂诱发地震震
源机制[J]. 地球物理学报,2019,62(11):4417-4436.
[24] 李晗,常旭. 微地震震源机制研究进展[J]. 中国科学:地球科学,2021,51(03):
325-338.
[25] 张宪旭,杨光明,蔡文芮,等. 煤层下部地层地震成像研究[J]. 煤田地质与勘
探,2015,43(02):83-85.
[26] 张永成,郝海金,李兵,等. 煤层气水平井微地震成像裂缝监测应用研究[J].
煤田地质与勘探,2018,46(04):67-71.
[27] Maxwell S. Microseismic imaging of hydraulic fracturing[M]. Houston: Soci ety
of Exploration Geophysicists, 2014: 1-11.
[28] 李仕彦. 水力压裂地面微地震监测系统及震源定位方法研究[D]. 成都:西南
石油大学,2013:6-10.
[29] Warpinski N R, Sullivan R B, Uhl J E, et al. Improved Microseismic Fracture
Mapping Using Perforation Timing Measurements for Velocity Calibration[J]. SPE
Journal, 2005, 3: 14-23.
[30] Pei D, Quirein J A, Cornish B E, et al. SPWLA 49th annual logging symposium[C].
Austin: Petroleum Press, 2008: 1-9.
[31] Pavlis G L. Appraising earthquake hypocenter location errors: A complete,
practical approach for single-event locations[J]. Bulletin of the Seismological
Society of America, 1986, 76(6): 1699-1717.
[32] 宋维琪,冯超. 微地震有效事件自动识别与定位方法[J]. 石油地球物理勘探,
2013,48(2):283-288.
[33] Pei D, Quirein J A, Cornish B E, et al. Velocity calibration for microseismic
monitoring: A very fast simulated annealing (VFSA) approach for joint-objective
optimization[J]. Geophysics, 2009, 74(6): WCB47-WCB55.
[34] Tian X, Zhang W, Zhang J. Cross double-difference inversion for microseismic
event location using data from a single monitoring well[J]. Geophysics, 2016,
81(5): KS183-KS194.
[35] 隋微波,刘荣全,崔凯. 水力压裂分布式光纤声波传感监测的应用与研究进
展[J]. 中国科学:技术科学,2021,51(4):1-17.
[36] Rentsch S, Buske S, S. Lüth, et al. 67th EAGE Conference & Exhibition[C]. Paris:
European Association of Geoscientists & Engineers, 2005: cp -1-00596.
[37] Haldorsen B U, Brooks N J, Milenkovic M. Locating microseismic sources using
migration-based deconvolution[J]. Geophysics, 2013, 78(5): KS73-KS84.
[38] Tian X, Zhang W, Zhang J. Cross double‐difference inversion for simultaneous
velocity model update and microseismic event location[J] . Geophysical
Prospecting, 2017, 65(5), 259-273.
[39] Warpinski N R, Du J. SPE hydraulic fracturing technology conference[C].Houston:
Society of Petroleum Engineers, 2013: 1-15.
[40] Wilson S, Raymer D, Jones R. SEG Annual Meeting Technical Program Expanded
Abstracts[C]. Houston: Society of Petroleum Engineers, 2003: 1565 -1568.
[41] Zhou H W. Multiscale traveltime tomography[J]. Geophysics, 2003, 68(5): 1639 -
1649.
[42] Zhou H W. Multiscale deformable-layer tomography[J]. Geophysics, 2006, 71(3):
R11-R19.
[43] Li J, Zhang H, Rodi W L, et al. Joint microseismic location and anisotropic
tomography using differential arrival times and differential backazimuths[J].
Geophysical Journal International, 2013, 195(3): 1917-1931.
[44] Li J, Li C, Morton S A, et al. Microseismic joint location and a nisotropic velocity
inversion for hydraulic fracturing in a tight Bakken reservoir[J]. Geophysics, 2014,
79(5): 111-C122.
[45] Grechka V, Yaskevich S. Azimuthal anisotropy in microseismic monitoring: A
Bakken case study[J]. Geophysics, 2014, 79(1): KS1-KS12.
[46] Bardainne T, Gaucher E. Constrained tomography of realistic velocity models in
microseismic monitoring using calibration shots[J]. Geophysical Prospecting,
2010, 58(5): 739-753.
[47] 蒋星达,张伟,王仔轩,等. 基于总变分(TV)正则化约束的微地震井下速
度模型校正[J]. 物探化探计算技术,2018,040(005):559-564.
[48] Grechka V, Li Z, Howell B, et al. High-resolution microseismic imaging[J].
Leading Edge, 2017, 36(10): 822-828.
[49] Lin Y, Zhang H, Jia X. Target-oriented imaging of hydraulic fractures by applying
the staining algorithm for downhole microseismic migration[J]. Jo urnal of Applied
Geophysics, 2018, 150: 278-283.
[50] Warpinski N. Microseismic Monitoring: Inside and Out[J]. Journal of Petroleum
Technology, 2009, 61(11): 80-85.
[51] Erwemi A, Walsh J, Bennett L, et al. SEG Annualing Meeting Technical Program
Expanded Abstracts[C]. Houston: Society of Petroleum Engineers, 2010: 508-512.
[52] Maxwell S C, Bennett L, Jones M. SEG Annualing Meeting Technical Program
Expanded Abstracts[C]. Houston: Society of Petroleum Engineers, 2010: 2130 -
2134.
[53] Woerpel C. SEG Annualing Meeting Technical Program Expanded Abstracts[C].
Houston: Society of Petroleum Engineers, 2010: 2135-2139.
[54] Grechka V, Singh P, Das I. Estimation of effective anisotropy simultaneously with
locations of microseismic events[J]. Geophysics, 2011, 76(6): WC143 -WC155.
[55] Pei D, Carmichael J, Waltman C, et al. SEG Annualing Meeting Technical Program
Expanded Abstracts[C]. Houston: Society of Petroleum Engineers, 2014: 2278 -
2282.
[56] Zhang Z, Du J, Gao F. Simultaneous inversion for microseismic event location and
velocity model in Vaca Muerta Formation[J]. Geophysics, 2018, 83(3): KS23-
KS34.
[57] Zhang Z, Du J, Mavko G M. Reservoir characterization using perforation shots:
Anisotropy, attenuation and uncertainty analysis[J]. Geophysical Journal
International, 2019, 216(1): 470-485.
[58] Pirli M, Heiner I. Computational seismology: a practical introduction[J]. Journal
of Seismology, 2017, 21(3): 567-570.
[59] Cerveny V. Seismic ray theory[M]. London: Cambridge University Press, 2005:
14-32.
[60] 张雁雁. 水平层状VTI 介质两点射线追踪方法研究[D]. 哈尔滨:哈尔滨工业
大学,2020:20-26.
[61] 邴琦,孙章庆,韩复兴,等. 地震波射线追踪方法综述——方法、分类、发展
现状与趋势[J]. 地球物理学进展,2020,35(02):536-547.
[62] Julian B, Gubbins D. Three-Dimensional Seismic Ray Tracing[J]. Journal of
Geophysics, 1977, 43(1): 95-113.
[63] Moser T J. Shortest path calculation of seismic ray[J]. Geophysics, 1991, 56(1):
59-67.
[64] Schneider W A J, Ranzinger K A, Balch A H, et al.A dynamic programming
approach to first arrival traveltime computation in media with arbitrarily
distributed velocities[J]. Geophysics, 1991, 57(1): 39 -50.
[65] Asakawa E, Kawanaka T. Seismic ray tracing using linear traveltime
interpolation[J].Geophysical Prospecting, 1993, 41(1): 99-111.
[66] Fischer R, Lees J M. Shortest path ray tracing with sparse graphs[J]. Geophysics,
1993, 58(7): 987-996.
[67] 张建中,陈世军,徐初伟. 动态网络最短路径射线追踪[J]. 地球物理学报,
2004(05):900-905.
[68] 王辉,常旭. 基于图形结构的三维射线追踪方法[J]. 地球物理学报, 2000(04):
534-541.
[69] 张美根,程冰洁,李小凡,等. 一种最短路径射线追踪的快速算法[J]. 地球物
理学报,2006(05):1467-1474.
[70] 赵后越,张美根. 起伏地表条件下各向异性地震波最短路径射线追踪[J]. 地
球物理学报,2014,57(09):2910-2917.
[71] Bai C Y, Greenhalgh S, Zhou B. 3D ray tracing using a modified shortest -path
method[J]. Geophysics, 2007, 72(4): T27-T36.
[72] Bai C Y, Huang G J, Li X L, et al. Ray tracing of multiple
transmitted/reflected/converted waves in 2-D/3-D layered anisotropic TTI media
and application to crosswell traveltime tomography[J]. Geophysical Journal
International, 2013, 195(2), 1068-1087.
[73] Bai C Y, Li X L, Wang Q L, et al. Multiple arrival tracking within irregular
triangular or tetrahedral cell model[J]. Journal of Geophysics and Engineering,
2012, 9(1): 29-38.
[74] 王华忠,方正茂,徐兆涛,等. 地震波旅行时计算[J]. 石油地球物理勘探,1999,
34(02):155-163.
[75] 张赛民,周竹生,陈灵君,等. 对旅行时进行抛物型插值的地震射线追踪方
法[J]. 地球物理学进展,2007(01):43-48.
[76] 梅胜全,邓飞,钟本善,等. 基于改进的双线性旅行时插值的三维射线追踪
[J]. 物探化探计算技术,2010,32(02):152-157.
[77] 黄靓,黄政宇. 线性插值射线追踪的改进方法[J]. 湘潭大学自然科学学报,
2002(04):105-108.
[78] 王琦,朱盼,叶佩,等. 起伏地表地震波旅行时混合网格线性插值射线追踪
计算方法[J]. 石油地球物理勘探,2018,53(01):35-46.
[79] 王家映. 地球物理资料非线性反演方法讲座(一)地球物理反演问题概述[J].
工程地球物理学报,2007,4(1):1-3.
[80] 王家映. 地球物理反演理论[M]. 北京:高等教育出版社,2002:113-132.
[81] Aster R C, Borchers B, Thurber C H. Parameter estimation and inverse
problems[M]. Elsevier, 2018: 93-127.
[82] Parker R L. Understanding Inverse Theory[J]. Annual Review of Earth & Planetary
Sciences, 1977, 5(1): 35-64.
[83] Tarantola A. Inverse problem theory and methods for model parameter
estimation[M]. Philadelphia: Society for Industrial and Applied Mathematics,
2005: 51-54.
[84] Sen M K, Stoffa P L. Bayesian inference, Gibbs' sampler and uncertainty
estimation in geophysical inversion[J]. Geophysical Prospecting, 1996, 44(2):
313-350.
[85] Ray A, Key K. Bayesian inversion of marine CSEM data with a transdimensional
self parametrizing algorithm[J]. Geophysical Journal International, 2012, 191(3):
1135-1151.
[86] Bayes T. An essay towards solving a problem in the doctrine of chances[J].
Philosophical transactions of the Royal Society of London, 1763(53): 370 -418.
[87] Laplace P S. A philosophical essay on probabilities[M]. Hoboken: Wiley, 1902:43-56.
[88] Guo R, Dosso S E, Liu J, et al. Non-linearity in Bayesian 1-D magnetotelluric
inversion[J]. Geophysical Journal International, 2011, 185(2): 663 -675.
[89] 印兴耀,周琪超,宗兆云,等. 基于t 分布为先验约束的叠前AVO 反演[J].
石油物探,2014,53(01):84-92.
[90] 袁成,李景叶,陈小宏. 地震岩相识别概率表征方法[J]. 地球物理学报,2016,
59(01):287-298.
[91] Kolbjørnsen O, Buland A, Hauge R, et al. Bayesian seismic inversion for
stratigraphic horizon, lithology, and fluid prediction[J]. Geophysics, 2020, 85(3):
R207-R221.
[92] Mosegaard K, Tarantola A. Monte Carlo sampling of solutions to inverse
problems[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B7): 12431 -
12447.
[93] Schott J J, Roussignol M, Menvielle M, et al. Bayesian inversion with Markov
chains—II. The one-dimensional DC multilayer case[J]. Geophysical Journal
International, 1999, 138(3): 769-783.
[94] Buland A, Kolbjørnsen O. Bayesian inversion of CSEM and magnetotelluric
data[J]. Geophysics, 2012, 77(1): E33-E42.
[95] Grana D. Bayesian petroelastic inversion with multiple prior models[J].
Geophysics, 2020, 85(5): M57-M71.
[96] Yustres Á, Asensio L, Alonso J, et al. A review of Markov Chain Monte Carlo and
information theory tools for inverse problems in subsurface flow[J].
Computational Geosciences, 2012, 16(1): 1-20.
[97] Robert C P, Chopin N, Rousseau J. Harold Jeffreys’s theory of probability
revisited[J]. Statistical Science, 2009, 24(2): 141-172.
[98] Ulrych T J, Sacchi M D, Woodbury A. A Bayes tour of inversion: A tutorial[J].
Geophysics, 2001, 66(1): 55-69.
[99] Malinverno A, Briggs V A. Expanded uncertainty quantification in inverse
problems: Hierarchical Bayes and empirical Bayes[J]. Geophysics, 2004, 69(4):
1005-1016.
[100] 肖爽,巴晶,符力耘,等. 基于高斯先验和马尔科夫随机场约束的非线性叠
前地震反演研究及应用[J]. 地球物理学进展,2020,35(6):2250-2258.
[101] 胡华锋,印兴耀,吴国忱. 基于贝叶斯分类的储层物性参数联合反演方法[J].
石油物探,2012,51(03):225-232.
[102] 刘彦,吕庆田,李晓斌,等. 基于模型降阶的贝叶斯方法在三维重力反演中
的实践[J]. 地球物理学报,2015,58(12):4727-4739.
[103] 杨培杰,印兴耀. 非线性二次规划贝叶斯叠前反演[J]. 地球物理学报,2008,
51(06):1876-1882.
[104] 张世鑫,印兴耀,张繁昌. 基于三变量柯西分布先验约束的叠前三参数反演
方法[J]. 石油地球物理勘探,2011,46(05):737-743.
[105] 赵小龙,吴国忱,曹丹平. 多尺度地震资料稀疏贝叶斯联合反演方法[J]. 石油
地球物理勘探,2016,51(06):1156-1163.
[106] Alemie W, Sacchi M D. High-resolution three-term AVO inversion by means of a
Trivariate Cauchy probability distribution[J]. Geophysics, 2011, 76(3): R43 -R55.
[107] Yin X, Zhang S. Bayesian inversion for effective pore-fluid bulk modulus based
on fluid-matrix decoupled amplitude variation with offset approximation[J].
Geophysics, 2014, 79(5): R221-R232.
[108] Theune U, Jensås I Ø, Eidsvik J. Analysis of prior models for a blocky inversion of seismic AVA data[J]. Geophysics, 2010, 75(3): C25-C35.
[109] Visser G, Guo P, Saygin E. Bayesian transdimensional seismic full-waveform inversion with a dipping layer parameterization[J]. Geophysics, 2019, 84(6): R845-R858.
[110] 何沛阳,卢建旗,李山有,等. 地震预警震级估算方法的不确定性评估模型
——以τ~p_(max)法为例[J]. 内陆地震,2020,34(04):317-329.
[111] Guitton A, Symes W W. Robust inversion of seismic data using the Huber norm[J]. Geophysics, 2003, 68(4): 1310-1319.
[112] 印海燕. AVO 叠前反演方法研究[D]. 青岛:中国石油大学,2008:14-22.
[113] Avseth P, Mukerji T, Jørstad A, et al. Seismic reservoir mapping from 3 -D AVO in a North Sea turbidite system[J]. Geophysics, 2001, 66(4): 1157-1176.
[114] Eidsvik J, Avseth P, Omre H, et al. Stochastic reservoir characterization using prestack seismic data[J]. Geophysics, 2004, 69(4): 978 -993.
[115] 田军,吴国忱,宗兆云. 鲁棒性AVO 三参数反演方法及不确定性分析[J]. 石
油地球物理勘探,2013,48(03):443-449.
[116] de Figueiredo L P, Grana D, Roisenberg M, et al. Multimodal Markov chain Monte Carlo method for nonlinear petrophysical seismic inversion[J]. Geophysics, 2019, 84(5): M1-M13.
[117] 姚铭,高刚,胡瑞卿,等. 一种改进的贝叶斯反演算法[J]. 地球物理学进展,2020,35(05):1911-1918.
[118] Scales J A, Snieder R. What is noise?[J]. Geophysics, 19 98, 63(4): 1122-1124.
[119] Minson S E, Simons M, Beck J L, et al. Bayesian inversion for finite fault earthquake source models–II: the 2011 great Tohoku-oki, Japan earthquake[J].
Geophysical Journal International, 2014, 198(2): 922-940.
[120] 黄捍东,赵迪,任敦占,等. 基于贝叶斯理论的薄层反演方法[J]. 石油地球物理勘探,2014,46(06):919-924.
[121] 苑闻京. 叠前反演和地震吸收技术在复杂天然气藏地震预测中的应用[J]. 地
球物理学进展,2012,27(03):1107-1115.
[122] 张繁昌,肖张波,印兴耀. 地震数据约束下的贝叶斯随机反演[J]. 石油地球物
理勘探,2014,49(01):176-182.
[123] Mallick S. Model-based inversion of amplitude-variations-with-offset data using a
genetic algorithm[J]. Geophysics, 1995, 60(4): 939-954.
[124] 余小东, 陆从德, 王绪本. 时间域航空电磁数据的自适应变维贝叶斯反演研
究[J]. 地球物理学进展,2020,35(05):2023-2032.
[125] Duijndam A J W. Bayesian estimation in seismic inversion. Part I:princiles[J].
Geophysical Prospecting, 1988, 36(8): 878-898.
[126] 刘艳杰. 参数反演的贝叶斯方法及其应用研究[D]. 淄博:山东理工大学,2020:
34-40
[127] Downton J E, Lines L R. SEG Annual Meeting Technical Program Expanded
Abstracts[C]. Houston: Society of Exploration Geophysicists, 2001, 251 -254.
[128] Kjønsberg H, Hauge R, Kolbjørnsen O, et al. Bayesian Monte Carlo meth od for
seismic predrill prospect assessment[J]. Geophysics, 2010, 75(2): O9 -O19.
[129] Michalak A M, Hirsch A, Bruhwiler L, et al. Maximum likelihood estimation of
covariance parameters for Bayesian atmospheric trace gas surface flux
inversions[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D24107):
1-16.
[130] Zhu H, Li S, Fomel S, et al. A Bayesian approach to estimate uncertainty for full -
waveform inversion using a priori information from depth migration[J].
Geophysics, 2016, 81(5): R307-R323.
[131] Guo R, Dosso S E, Liu J, et al. Frequency-and spatial-correlated noise on layered
magnetotelluric inversion[J]. Geophysical Journal International, 2014, 199(2): 1205-1213.
[132] Oliver D S, Alfonzo M. Calibration of imperfect models to biased observations[J].
Computational Geosciences, 2018, 22(1): 145-161.
[133] Sambridge M. Geophysical inversion with a neighbourhood algorithm—I.
Searching a parameter space[J]. Geophysical journal international, 1999, 138(2):
479-494.
[134] Malinverno A, Parker R L. Two ways to quantify uncertainty i n geophysical
inverse problems[J]. Geophysics, 2006, 71(3): W15-W27.
[135] Dettmer J, Molnar S, Steininger G, et al. Transdimensional inversion of
microtremor array dispersion data with hierarchical autoregressive error models[J].
Geophysical Journal International, 2012, 188(2): 719-734.
[136] Irving J, Singha K. Stochastic inversion of tracer test and electrical geophysical
data to estimate hydraulic conductivities[J]. Water Resources Research, 2010,
46(11): 1-16
[137] Grana D, Passos de Figueiredo L, Azevedo L. Uncertainty quantification in
Bayesian inverse problems with model and data dimension reduction[J].
Geophysics, 2019, 84(6): M15-M24.
[138] Bodin T, Sambridge M, Rawlinson N, et al. Transdimensional tomography with
unknown data noise[J]. Geophysical Journal International, 2012, 189(3): 1536-
1556.
[139] Sambridge M, Gallagher K, Jackson A, et al. Transdimensional inverse problems,
model comparison and the evidence[J]. Geophysical Journal International, 2006,
167(2): 528-542.
[140] Chen J, Kemna A, Hubbard S S. A comparison between Gauss -Newton and
Markov-chain Monte Carlo–based methods for inverting spectral inducedpolarization
data for Cole-Cole parameters[J]. Geophysics, 2008, 73(6): F247-
F259.
[141] Bodin T, Sambridge M, Gallagher K. A self-parametrizing partition model
approach to tomographic inverse problems[J]. Inverse Problems, 2009, 25(5):
055009.
[142] Bodin T, Sambridge M, Tkalčić H, et al. Transdimensional inversion of receiver
functions and surface wave dispersion[J]. Journal of Geophysical Research: Solid
Earth, 2012, 117(B02301): 1-24.
[143] 尹彬,胡祥云. 非线性反演的贝叶斯方法研究综述[J]. 地球物理学进展,2016,31(03):1027-1032.
[144] 李承瑾,郭荣文,柳建新,等. 跨维贝叶斯反演在地球物理中的研究进展[J].
工程地球物理学报,2018,15(04):501-508.
[145] Sambridge M, Bodin T, Gallagher K, et al. Transdimensional inference in the
geosciences[J]. Philosophical Transactions of the Ro yal Society A: Mathematical,
Physical and Engineering Sciences, 2013, 371(1984): 20110547.
[146] Akaike H. Likelihood and the Bayes procedure[J]. Trabajos de estadística y de
investigación operativa, 1980, 31(1): 143-166.
[147] Yabuki T, Matsu'Ura M. Geodetic data inversion using a Bayesian information
criterion for spatial distribution of fault slip[J]. Geophysical Journal International,
1992, 109(2): 363-375.
[148] Fukahata Y, Yagi Y, Matsu'ura M. Waveform inversion for seismic source processes
using ABIC with two sorts of prior constraints: Comparison between proper and
improper formulations[J]. Geophysical research letters, 2003, 30(6): 38-1 – 38-4.
[149] Xiong Z, Zhuang J, Zhou S, et al. Crustal strain-rate fields estimated from GNSS
data with a Bayesian approach and its correlation to seismic activity in Mainland
China[J]. Tectonophysics, 2021, 815: 229003.
[150] Duijndam A J W. Bayesian estimation in seismic inversion. Part II: Uncertainty
analysis[J]. Geophysical Prospecting, 1988, 36(8): 899-918.
[151] Grana D. Bayesian linearized rock-physics inversion[J]. Geophysics, 2016, 81(6):
D625-D641.
[152] Buland A, Omre H. Bayesian linearized AVO inversion[J]. Geophysics, 2003,
68(1): 185-198.
[153] Tarantola A, Valette B. Inverse problems= quest for information[J]. Journal of
geophysics, 1982, 50(1): 159-170.
[154] Metropolis N, Ulam S. The monte carlo method[J]. Journal of the American
statistical association, 1949, 44(247): 335-341.
[155] Metropolis N, Rosenbluth A W, Rosenbluth M N, et al. Equation of state
calculations by fast computing machines[J]. The journal of chemical physics, 1953,
21(6): 1087-1092.
[156] Hastings W K. Monte Carlo sampling methods using Markov chains and their
applications[J]. Biometrika, 1970, 57(1): 97-109.
[157] Smith A F M, Roberts G O. Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods[J]. Journal of the Royal Statistical
Society: Series B (Methodological), 1993, 55(1): 3-23.
[158] Green P J. Reversible jump Markov chain Monte Carlo computation and Bayesian
model determination[J]. Biometrika, 1995, 82(4): 711-732.
[159] 张广智,王丹阳,印兴耀,等. 基于MCMC 的叠前地震反演方法研究[J]. 地
球物理学报,2011,54(11):2926-2932.
[160] 王朋岩,李耀华,赵荣. 叠后MCMC 法岩性反演算法研究[J]. 地球物理学进
展,2015,30(04):1918-1925.
[161] Bagnardi M, Hooper A. Inversion of surface deformation data for rapid estimates
of source parameters and uncertainties: A Bayesian approach[J]. Geochemistry,
Geophysics, Geosystems, 2018, 19(7): 2194-2211.
[162] Grandis H, Menvielle M, Roussignol M. Bayesian inversion with Markov chains—
I. The magnetotelluric one-dimensional case[J]. Geophysical Journal International,
1999, 138(3): 757-768.
[163] Ulvmoen M, Omre H. Improved resolution in Bayesian lithology/fluid inversion
from prestack seismic data and well observations: Part 1—Methodology[J].
Geophysics, 2010, 75(2): R21-R35.
[164] Schwarz G. Estimating the dimension of a model[J]. Annals of statistic s, 1978,
6(2): 461-464.
[165] Malinverno A. Parsimonious Bayesian Markov chain Monte Carlo inversion in a
nonlinear geophysical problem[J]. Geophysical Journal International, 2002, 151(3):
675-688.
[166] Zhu D, Gibson R. Seismic inversion and uncertainty quantificati on using
transdimensional Markov chain Monte Carlo method[J]. Geophysics, 2018(83):
R321-R334.
[167] Vrugt J A, Ter Braak C J F, Clark M P, et al. Treatment of input uncertainty in
hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo
simulation[J]. Water Resources Research, 2008, 44(12): W00B09.
[168] Laloy E, Vrugt J A. High‐dimensional posterior exploration of hydrologic models
using multiple‐try DREAM (ZS) and high‐performance computing[J]. Water
Resources Research, 2012, 48(1): W01526.
[169] Ray A, Alumbaugh D L, Hoversten G M, et al. Robust and accelerated Bayesian
inversion of marine controlled-source electromagnetic data using parallel
tempering[J]. Geophysics, 2013, 78(6): E271-E280.
[170] Sambridge M. A parallel tempering algorithm for probabilistic sampling and
multimodal optimization[J]. Geophysical Journal International, 2014, 196(1): 357 -
374.
[171] Bodin T, Sambridge M. Seismic tomography with the reversible jump algorithm[J].
Geophysical Journal International, 2009, 178(3), 1411-1436.
[172] Hong T, Sen M K. A new MCMC algorithm for seismic waveform inversion and
corresponding uncertainty analysis[J]. Geophysical Journal International, 2009,
177(1): 14-32.
[173] 王文涛,朱培民. 地震储层预测中贝叶斯反演方法的研究[J]. 石油天然气学
报,2009(05):263-266.
[174] Chen J, Kemna A, Hubbard S S. A comparison between Gauss-Newton and
Markov-chain Monte Carlo–based methods for inverting spectral inducedpolarization
data for Cole-Cole parameters[J]. Geophysics, 2008, 73(6): F247-
F259.
[175] Sacchi M D, Ulrych T J. High-resolution velocity gathers and offset space
reconstruction[J]. Geophysics, 1995, 60(4): 1169-1177.
[176] Agostinetti N P, Malinverno A. Receiver function inversion by transdimensional
Monte Carlo sampling[J]. Geophysical Journal International, 2010, 181(2): 858 -
872.
[177] Stein S, Wysession M. An introduction to seismology, earthquakes, and earth
structure[M]. Blackwell Publishing Ltd, 2003: 29-30.
[178] Markov G, Mukerji T, Dvorkin J. The Rock Physics Handbook[M]. Canbridge
University Press, 2003:24-30, 83-86.
[179] Dijkstra E W. A note on two problems in connexion with graphs[J]. Numerische
Mathematik, 1959, 1(1): 269-271.
[180] 刘玲君,谢中华,杨萃. 基于边界线性走时插值的射线追踪算法[J]. 华南理工
大学学报(自然科学版),2014,42(05):23-28.
[181] Thomsen L. Weak elastic anisotropy[J]. Geophysics, 1986, 51(10): 1954 -1966.
[182] Tsvankin I. Anisotropic parameters and P-wave velocity for orthorhombic media[J].
Geophysics, 1997, 62(4): 1292-1309.
[183] Sena A G. Seismic traveltime equations for azimuthally anisotropic and isotropic
media: Estimation of interval elastic properties[J]. Geophysics, 1991, 56(12): 2090-2101.
[184] Byun B S, Corrigan D, Gaiser J E. Anisotropic velocity analysis for lithology
discrimination[J]. Geophysics, 1989, 54(12): 1564-1574.
[185] 赵爱华,丁志峰. 一种弱各向异性介质地震波群速度的近似表示新方法[J].
地球物理学进展,2005(04):916-919.
[186] Geiger L. Probability method for the determination of earthquake epicenters from
the arrival time only[J]. Bull. St. Louis Univ, 1912, 8(1): 56-71.
[187] Bouchaala F, Vavryčuk V, Fischer T. Accuracy of the master-event and doubledifference
locations: Synthetic tests and application to seismicity in West Bohemia,
Czech Republic[J]. Journal of seismology, 2013, 17(3): 841-859.
[188] Waldhauser F, Ellsworth W L. A double-difference earthquake location algorithm: Method and application to the northern Hayward fault, California[J]. Bulletin of the Seismological Society of America, 2000, 90(6): 1353 -1368.
[189] Got J L, Okubo P. New insights into Kilauea's volcano dynamics brought by large -scale relative relocation of microearthquakes[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B7): 5-1-5-13.
[190] Golub G H, Reinsch C. Singular value decomposition and least squ ares solutions[M]. Berlin: Linear algebra, 1971: 134-151.
[191] Jansky J, Plicka V, Eisner L. Feasibility of joint 1D velocity model and event location inversion by the neighbourhood algorithm[J]. Geophysical Prospecting, 2010, 58(2): 229-234.
[192] Gei D, Eisner L, Suhadolc P. Feasibility of estimating vertical transverse isotropy from microseismic data recorded by surface monitoring arrays[J]. Geophysics, 2011, 76(6): WC117-WC126.
[193] Jing H, Zhou H W, Li A. Quantification of the impact of seismic anisotropy in microseismic location[J]. International Journal of Geosciences, 2016, 7(07): 884 -890.
[194] Gajek W, Malinowski M. Errors in microseismic events locations introduced by neglecting anisotropy during velocity model calibration in downhole monitoring[J].
Journal of Applied Geophysics, 2021, 184: 104222.
修改评论