题名 | Identifying Abelian and non-Abelian topological orders in the string-net model using a quantum scattering circuit |
作者 | |
通讯作者 | Xin, Tao; Li, Keren; Lu, Dawei |
发表日期 | 2022-03-29
|
DOI | |
发表期刊 | |
ISSN | 2469-9926
|
EISSN | 2469-9934
|
卷号 | 105期号:3 |
摘要 | Realizing universal topological quantum computers requires the manipulation of non-Abelian topological orders in a physical system, which presents great challenges. Conversely, the rapid development in circuit-based quantum computing offers a reliable quantum simulation approach to study these topological orders. The preliminary problem is how to identify distinct topological orders. Here, we develop a framework based on the quantum scattering circuit to directly and efficiently measure the modular transformation matrix, which is widely deemed as the fingerprint of a given topological order. The information of the modular transformation matrix is encoded in the probe qubit, and the readout merely requires single-qubit Pauli measurements. We further implement the scheme in a nuclear magnetic resonance quantum simulator to emulate the string-net model, where an Abelian Z(2) toric code and a non-Abelian Fibonacci order emerge. In particular, the latter is predicted to be the simplest candidate for universal topological quantum computers. The two topological orders are unambiguously distinguished by the experimentally measured modular transformation matrices. As an experimental demonstration of a non-Abelian topological order with efficient readout, our work may open avenues toward investigating topological orders in circuit-based quantum simulators. |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | National Key Research and Development Program of China[2019YFA0308100]
; National Natural Science Foundation of China[12075110,11975117,11905099,11875159,11905111,"U1801661"]
; Guangdong Basic and Applied Basic Research Foundation[2019A1515011383]
; Guangdong International Collaboration Program[2020A0505100001]
; Science, Technology and Innovation Commission of Shenzhen Municipality["ZDSYS20190902092905285","KQTD20190929173815000","JCYJ20200109140803865","JCYJ20180302174036418"]
; Pengcheng Scholars, Guangdong Innovative and Entrepreneurial Research Team Program[2019ZT08C044]
; Guangdong Provincial Key Laboratory[2019B121203002]
|
WOS研究方向 | Optics
; Physics
|
WOS类目 | Optics
; Physics, Atomic, Molecular & Chemical
|
WOS记录号 | WOS:000779849500008
|
出版者 | |
EI入藏号 | 20221712027907
|
EI主题词 | Linear transformations
; Matrix algebra
; Qubits
; Timing circuits
; Topology
|
EI分类号 | Pulse Circuits:713.4
; Light, Optics and Optical Devices:741
; Nanotechnology:761
; Physical Chemistry:801.4
; Algebra:921.1
; Mathematical Transformations:921.3
; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
|
ESI学科分类 | PHYSICS
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:7
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/331103 |
专题 | 量子科学与工程研究院 理学院_物理系 |
作者单位 | 1.Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China 2.Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China 3.Guangdong Prov Key Lab Quantum Sci & Engn, Shenzhen 518055, Peoples R China 4.Peng Cheng Lab, Shenzhen 518066, Peoples R China 5.Southern Univ Sci & Technol, Shenzhen Key Lab Adv Quantum Funct Mat & Devices, Shenzhen 518055, Peoples R China |
第一作者单位 | 量子科学与工程研究院; 物理系 |
通讯作者单位 | 量子科学与工程研究院; 物理系; 南方科技大学 |
第一作者的第一单位 | 量子科学与工程研究院 |
推荐引用方式 GB/T 7714 |
Zhang, Ze,Long, Xinyue,Zhao, Xiuzhu,et al. Identifying Abelian and non-Abelian topological orders in the string-net model using a quantum scattering circuit[J]. PHYSICAL REVIEW A,2022,105(3).
|
APA |
Zhang, Ze.,Long, Xinyue.,Zhao, Xiuzhu.,Lin, Zidong.,Tang, Kai.,...&Lu, Dawei.(2022).Identifying Abelian and non-Abelian topological orders in the string-net model using a quantum scattering circuit.PHYSICAL REVIEW A,105(3).
|
MLA |
Zhang, Ze,et al."Identifying Abelian and non-Abelian topological orders in the string-net model using a quantum scattering circuit".PHYSICAL REVIEW A 105.3(2022).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论