中文版 | English
题名

A classification-assisted environmental selection strategy for multiobjective optimization

作者
通讯作者Ishibuchi,Hisao
发表日期
2022-06-01
DOI
发表期刊
ISSN
2210-6502
EISSN
2210-6510
卷号71
摘要
Environmental selection of multiobjective evolutionary algorithms (MOEAs) is a key component that chooses promising solutions from a candidate set for later usage. Most environmental selection strategies choose solutions based on their function values. However, in real-world optimization problems, function evaluations can be time consuming. The necessity of a large number of function evaluations leads to the low efficiency of MOEAs. How to decrease the number of function evaluations is one of the main issues of MOEAs. The environmental selection can be regarded as a classification process. The selected solutions are the promising class, and the discarded solutions are the unpromising class. Based on this consideration, we propose a classification-assisted environmental selection (CAES) strategy in this paper to decrease the number of function evaluations in MOEAs. In the proposed method, solutions are divided into two classes. One is non-dominated solutions (i.e. promising class) and the other is dominated solutions (i.e. unpromising class). The classifier is built to classify the offspring solutions into these two classes. Only promising offspring are evaluated (unpromising ones are removed with no function evaluations). Therefore, the number of function evaluations is reduced. We integrate the proposed CAES strategy into six MOEAs. The effectiveness of the proposed CAES strategy is examined through computational experiments on various test suites and three real-world application problems. Our experimental results show that the proposed CAES strategy clearly reduces the number of function evaluations without severely degrading the search ability of the original MOEAs.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China[61876075];Shenzhen Science and Technology Innovation Program[KQTD2016112514355531];
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号
WOS:000795579900003
出版者
EI入藏号
20221611976576
EI主题词
Evolutionary algorithms ; Multiobjective optimization
EI分类号
Optimization Techniques:921.5 ; Numerical Methods:921.6
Scopus记录号
2-s2.0-85128164004
来源库
Scopus
引用统计
被引频次[WOS]:5
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/331129
专题工学院_计算机科学与工程系
作者单位
Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Zhang,Jinyuan,Ishibuchi,Hisao,He,Linjun. A classification-assisted environmental selection strategy for multiobjective optimization[J]. Swarm and Evolutionary Computation,2022,71.
APA
Zhang,Jinyuan,Ishibuchi,Hisao,&He,Linjun.(2022).A classification-assisted environmental selection strategy for multiobjective optimization.Swarm and Evolutionary Computation,71.
MLA
Zhang,Jinyuan,et al."A classification-assisted environmental selection strategy for multiobjective optimization".Swarm and Evolutionary Computation 71(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Jinyuan]的文章
[Ishibuchi,Hisao]的文章
[He,Linjun]的文章
百度学术
百度学术中相似的文章
[Zhang,Jinyuan]的文章
[Ishibuchi,Hisao]的文章
[He,Linjun]的文章
必应学术
必应学术中相似的文章
[Zhang,Jinyuan]的文章
[Ishibuchi,Hisao]的文章
[He,Linjun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。