中文版 | English
题名

RockGPT: reconstructing three-dimensional digital rocks from single two-dimensional slice with deep learning

作者
通讯作者Zhang,Dongxiao
发表日期
2022
DOI
发表期刊
ISSN
1420-0597
EISSN
1573-1499
摘要
Random reconstruction of three-dimensional (3D) digital rocks from two-dimensional (2D) slices is crucial for elucidating the microstructure of rocks and its effects on pore-scale flow in terms of numerical modeling, since massive samples are usually required to handle intrinsic uncertainties. Despite remarkable advances achieved by traditional process-based methods, statistical approaches and recently famous deep learning-based models, few works have focused on producing several kinds of rocks with one trained model and allowing the reconstructed samples to approximately satisfy certain given properties, such as porosity. To fill this gap, we propose a new framework with deep learning, named RockGPT, which is composed of VQ-VAE and conditional GPT, to synthesize 3D samples based on a single 2D slice from the perspective of video generation. The VQ-VAE is utilized to compress high-dimensional input video, i.e., the sequence of continuous rock slices, to discrete latent codes and reconstruct them. In order to obtain diverse reconstructions, the discrete latent codes are modeled using conditional GPT in an autoregressive manner, while incorporating conditional information from a given slice, rock type, and porosity. We conduct two experiments on five kinds of rocks, and the results demonstrate that RockGPT can produce different kinds of rocks with a single model, and the porosities of reconstructed samples can distribute around specified targets with a narrow range. In a broader sense, through leveraging the proposed conditioning scheme, RockGPT constitutes an effective way to build a general model to produce multiple kinds of rocks simultaneously that also satisfy user-defined properties.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
通讯
资助项目
Shenzhen Key Laboratory of Natural Gas Hydrates[ZDSYS20200421111201738] ; China Postdoctoral Science Foundation[2020 M682830]
WOS研究方向
Computer Science ; Geology
WOS类目
Computer Science, Interdisciplinary Applications ; Geosciences, Multidisciplinary
WOS记录号
WOS:000781002600001
出版者
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85128074239
来源库
Scopus
引用统计
被引频次[WOS]:20
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/331163
专题南方科技大学
作者单位
1.Department of Mathematics and Theories,Peng Cheng Laboratory,Shenzhen,518000,China
2.Shenzhen Key Laboratory of Natural Gas Hydrates,Southern University of Science and Technology,Shenzhen,518055,China
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Zheng,Qiang,Zhang,Dongxiao. RockGPT: reconstructing three-dimensional digital rocks from single two-dimensional slice with deep learning[J]. COMPUTATIONAL GEOSCIENCES,2022.
APA
Zheng,Qiang,&Zhang,Dongxiao.(2022).RockGPT: reconstructing three-dimensional digital rocks from single two-dimensional slice with deep learning.COMPUTATIONAL GEOSCIENCES.
MLA
Zheng,Qiang,et al."RockGPT: reconstructing three-dimensional digital rocks from single two-dimensional slice with deep learning".COMPUTATIONAL GEOSCIENCES (2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zheng,Qiang]的文章
[Zhang,Dongxiao]的文章
百度学术
百度学术中相似的文章
[Zheng,Qiang]的文章
[Zhang,Dongxiao]的文章
必应学术
必应学术中相似的文章
[Zheng,Qiang]的文章
[Zhang,Dongxiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。