中文版 | English
题名

Disturbance recognition for F-OTDR based on Faster-RCNN

作者
通讯作者Shao,Liyang
DOI
发表日期
2022
ISSN
0277-786X
EISSN
1996-756X
会议录名称
卷号
12169
摘要
This paper proposes a disturbance recognition method for phase-sensitive optical time-domain reflectometry (F-OTDR) based on Faster-RCNN. The method achieves high-speed detection of intrusion location and classification with high accuracy. Our scheme makes full use of the 2D sensing information on spatial-temporal images and uses the advanced "two-step" object detection algorithm Faster-RCNN to achieve real-time operation. Firstly, to improve the detection speed, Region Proposal Network (RPN) and Region of Interest (RoI) are used. Secondly, our CNN-based approach can extract features automatically of disturbance events from spatial-temporal images. So, it has better robustness compared to traditional machine learning methods. Thirdly, the method uses an end-to-end CNN object detection model that integrates multiple modules into a single network. Therefore, it has a significant advantage in detection speed. We conducted data collection under perimeter security scenarios and acquired 4 types of events with a total of 4987 samples. The four events contain “rigid collision”, “hitting net”, “shaking net”, and “cutting net”, which are representative in the perimeter security scenario. Experimental results proves that our method can achieve a real-time operation (0.1659 s processing time for 0.5 s sensing data) with high accuracy (96.32%), shows great potential in real-time disturbance detection for online monitoring industrial application of F-OTDR.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
Joint Fund of Research utilizing Large-scale Scientific Facilities[LZC0019];Australian Communications Consumer Action Network[LZC0020];
EI入藏号
20221611967751
EI主题词
Image segmentation ; Intrusion detection ; Learning systems ; Object detection ; Object recognition ; Optical data processing ; Time domain analysis
EI分类号
Digital Computers and Systems:722.4 ; Computer Software, Data Handling and Applications:723 ; Data Processing and Image Processing:723.2 ; Mathematics:921
Scopus记录号
2-s2.0-85128026516
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/331165
专题工学院_电子与电气工程系
作者单位
1.Department of Electrical and Electronic Engineering,Southern University of Science and Technology,Shenzhen,518055,China
2.State Key Laboratory of Analog and Mixed-Signal VLSI,University of Macau,999078,Macao
第一作者单位电子与电气工程系
通讯作者单位电子与电气工程系
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Xu,Wei Jie,Liu,Shuaiqi,Yu,Fei Hong,et al. Disturbance recognition for F-OTDR based on Faster-RCNN[C],2022.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xu,Wei Jie]的文章
[Liu,Shuaiqi]的文章
[Yu,Fei Hong]的文章
百度学术
百度学术中相似的文章
[Xu,Wei Jie]的文章
[Liu,Shuaiqi]的文章
[Yu,Fei Hong]的文章
必应学术
必应学术中相似的文章
[Xu,Wei Jie]的文章
[Liu,Shuaiqi]的文章
[Yu,Fei Hong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。