中文版 | English
题名

Human-Aware Robot Navigation via Reinforcement Learning with Hindsight Experience Replay and Curriculum Learning

作者
DOI
发表日期
2021
ISBN
978-1-6654-0536-2
会议录名称
页码
346-351
会议日期
27-31 Dec. 2021
会议地点
Sanya, China
摘要
In recent years, the growing demand for more intelligent service robots is pushing the development of mobile robot navigation algorithms to allow safe and efficient operation in a dense crowd. Reinforcement learning (RL) approaches have shown superior ability in solving sequential decision making problems, and recent work has explored its potential to learn navigation polices in a socially compliant manner. However, the expert demonstration data used in existing methods is usually expensive and difficult to obtain. In this work, we consider the task of training an RL agent without employing the demonstration data, to achieve efficient and collision-free navigation in a crowded environment. To address the sparse reward navigation problem, we propose to incorporate the hindsight experience replay (HER) and curriculum learning (CL) techniques with RL to efficiently learn the optimal navigation policy in the dense crowd. The effectiveness of our method is validated in a simulated crowd-robot coexisting environment. The results demonstrate that our method can effectively learn human-aware navigation without requiring additional demonstration data.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20221611977608
EI主题词
Curricula ; Decision making ; Demonstrations ; Intelligent robots ; Navigation ; Reinforcement learning
EI分类号
Artificial Intelligence:723.4 ; Robotics:731.5 ; Robot Applications:731.6 ; Education:901.2 ; Management:912.2
Scopus记录号
2-s2.0-85128241229
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9739519
引用统计
被引频次[WOS]:6
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/331173
专题工学院_电子与电气工程系
作者单位
1.Chinese University of Hong Kong,Department of Electronic Engineering,Hong Kong
2.Department of Electronic and Electrical Engineering,Southern University of Science and Technology,Shenzhen,China
3.Shenzhen Research Institute,Chinese University of Hong Kong,Shenzhen,China
推荐引用方式
GB/T 7714
Li,Keyu,Lu,Ye,Meng,Max Q.H.. Human-Aware Robot Navigation via Reinforcement Learning with Hindsight Experience Replay and Curriculum Learning[C],2021:346-351.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
10.1109@ROBIO54168.2(1515KB)----开放获取--浏览
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li,Keyu]的文章
[Lu,Ye]的文章
[Meng,Max Q.H.]的文章
百度学术
百度学术中相似的文章
[Li,Keyu]的文章
[Lu,Ye]的文章
[Meng,Max Q.H.]的文章
必应学术
必应学术中相似的文章
[Li,Keyu]的文章
[Lu,Ye]的文章
[Meng,Max Q.H.]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@ROBIO54168.2021.9739519.pdf
格式: Adobe PDF
文件名: 10.1109@ROBIO54168.2021.9739519.pdf
格式: Adobe PDF
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。