中文版 | English
题名

Automatic Recognition of Abdominal Organs in Ultrasound Images based on Deep Neural Networks and K-Nearest-Neighbor Classification

作者
DOI
发表日期
2021
ISBN
978-1-6654-0536-2
会议录名称
页码
1980-1985
会议日期
27-31 Dec. 2021
会议地点
Sanya, China
摘要
Abdominal ultrasound imaging has been widely used to assist in the diagnosis and treatment of various abdominal organs. In order to shorten the examination time and reduce the cognitive burden on the sonographers, we present a classification method that combines the deep learning techniques and k-Nearest-Neighbor (k-NN) classification to automatically recognize various abdominal organs in the ultra-sound images in real time. Fine-tuned deep neural networks are used in combination with PCA dimension reduction to extract high-level features from raw ultrasound images, and a k-NN classifier is employed to predict the abdominal organ in the image. We demonstrate the effectiveness of our method in the task of ultrasound image classification to automatically recognize six abdominal organs. A comprehensive comparison of different configurations is conducted to study the influence of different feature extractors and classifiers on the classification accuracy. Both quantitative and qualitative results show that with minimal training effort, our method can "lazily"recognize the abdominal organs in the ultrasound images in real time with an accuracy of 96.67%. Our implementation code is publicly available at https://github.com/LeeKeyu/abdominal_ultrasound_classification.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20221611977522
EI主题词
Classification (of information) ; Computer aided diagnosis ; Deep neural networks ; Motion compensation ; Nearest neighbor search ; Ultrasonic imaging
EI分类号
Biomedical Engineering:461.1 ; Ergonomics and Human Factors Engineering:461.4 ; Information Theory and Signal Processing:716.1 ; Data Processing and Image Processing:723.2 ; Computer Applications:723.5 ; Information Sources and Analysis:903.1 ; Optimization Techniques:921.5
Scopus记录号
2-s2.0-85128229097
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9739348
引用统计
被引频次[WOS]:5
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/331178
专题工学院_电子与电气工程系
作者单位
1.Chinese University of Hong Kong,Department of Electronic Engineering,Hong Kong,Hong Kong
2.Southern University of Science and Technology,Department of Electronic and Electrical Engineering,Shenzhen,China
3.Shenzhen Research Institute,Chinese University of Hong Kong,Shenzhen,China
推荐引用方式
GB/T 7714
Li,Keyu,Xu,Yangxin,Zhao,Ziqi,et al. Automatic Recognition of Abdominal Organs in Ultrasound Images based on Deep Neural Networks and K-Nearest-Neighbor Classification[C],2021:1980-1985.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
10.1109@ROBIO54168.2(996KB)----开放获取--浏览
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li,Keyu]的文章
[Xu,Yangxin]的文章
[Zhao,Ziqi]的文章
百度学术
百度学术中相似的文章
[Li,Keyu]的文章
[Xu,Yangxin]的文章
[Zhao,Ziqi]的文章
必应学术
必应学术中相似的文章
[Li,Keyu]的文章
[Xu,Yangxin]的文章
[Zhao,Ziqi]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@ROBIO54168.2021.9739348.pdf
格式: Adobe PDF
文件名: 10.1109@ROBIO54168.2021.9739348.pdf
格式: Adobe PDF
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。