中文版 | English
题名

Unseen Domain Generalization for Prostate MRI Segmentation via Disentangled Representations

作者
DOI
发表日期
2021
ISBN
978-1-6654-0536-2
会议录名称
页码
1986-1991
会议日期
27-31 Dec. 2021
会议地点
Sanya, China
摘要
In clinical practice, medical images obtained from different sites often exhibit appearance variations, resulting in limited generalizability of deep learning models for segmentation in deployment. It is an important but challenging task to train a model which can directly generalize to unseen domains with distribution shifts. In this paper, we propose to disentangle content from style representations for prostate MRI segmentation to improve the model generalization, considering anatomical content information is domain invariant and decides the segmentation masks. Our method roots in a representation disentanglement network, sharing the content encoder with the segmentation module to remove the effect of appearance discrepancy. Besides, we introduce two domain discriminators to further regularize the disentangled representation learning. We extensively validate our model on a multi-site dataset for prostate MRI segmentation. Both quantitative and qualitative experimental results demonstrate the effectiveness of our method, outperforming the baseline method and many state-of-the-art generalization methods.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20221611977597
EI主题词
Deep learning ; Image segmentation ; Medical imaging
EI分类号
Biomedical Engineering:461.1 ; Ergonomics and Human Factors Engineering:461.4 ; Medicine and Pharmacology:461.6 ; Imaging Techniques:746
Scopus记录号
2-s2.0-85128208135
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9739504
引用统计
被引频次[WOS]:2
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/331183
专题工学院_电子与电气工程系
作者单位
1.Chinese University of Hong Kong,Department of Electronic Engineering,Hong Kong,Hong Kong
2.Southern University of Science and Technology,Department of Electronic and Electrical Engineering,Shenzhen,China
3.Shenzhen Research Institute,Chinese University of Hong Kong,Shenzhen,China
推荐引用方式
GB/T 7714
Lu,Ye,Xing,Xiaohan,Meng,Max Q.H.. Unseen Domain Generalization for Prostate MRI Segmentation via Disentangled Representations[C],2021:1986-1991.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Lu,Ye]的文章
[Xing,Xiaohan]的文章
[Meng,Max Q.H.]的文章
百度学术
百度学术中相似的文章
[Lu,Ye]的文章
[Xing,Xiaohan]的文章
[Meng,Max Q.H.]的文章
必应学术
必应学术中相似的文章
[Lu,Ye]的文章
[Xing,Xiaohan]的文章
[Meng,Max Q.H.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。