题名 | Unseen Domain Generalization for Prostate MRI Segmentation via Disentangled Representations |
作者 | |
DOI | |
发表日期 | 2021
|
ISBN | 978-1-6654-0536-2
|
会议录名称 | |
页码 | 1986-1991
|
会议日期 | 27-31 Dec. 2021
|
会议地点 | Sanya, China
|
摘要 | In clinical practice, medical images obtained from different sites often exhibit appearance variations, resulting in limited generalizability of deep learning models for segmentation in deployment. It is an important but challenging task to train a model which can directly generalize to unseen domains with distribution shifts. In this paper, we propose to disentangle content from style representations for prostate MRI segmentation to improve the model generalization, considering anatomical content information is domain invariant and decides the segmentation masks. Our method roots in a representation disentanglement network, sharing the content encoder with the segmentation module to remove the effect of appearance discrepancy. Besides, we introduce two domain discriminators to further regularize the disentangled representation learning. We extensively validate our model on a multi-site dataset for prostate MRI segmentation. Both quantitative and qualitative experimental results demonstrate the effectiveness of our method, outperforming the baseline method and many state-of-the-art generalization methods. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20221611977597
|
EI主题词 | Deep learning
; Image segmentation
; Medical imaging
|
EI分类号 | Biomedical Engineering:461.1
; Ergonomics and Human Factors Engineering:461.4
; Medicine and Pharmacology:461.6
; Imaging Techniques:746
|
Scopus记录号 | 2-s2.0-85128208135
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9739504 |
引用统计 |
被引频次[WOS]:2
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/331183 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.Chinese University of Hong Kong,Department of Electronic Engineering,Hong Kong,Hong Kong 2.Southern University of Science and Technology,Department of Electronic and Electrical Engineering,Shenzhen,China 3.Shenzhen Research Institute,Chinese University of Hong Kong,Shenzhen,China |
推荐引用方式 GB/T 7714 |
Lu,Ye,Xing,Xiaohan,Meng,Max Q.H.. Unseen Domain Generalization for Prostate MRI Segmentation via Disentangled Representations[C],2021:1986-1991.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论