中文版 | English
题名

Learning-based Fast Path Planning in Complex Environments

作者
通讯作者Wang,Jiankun
DOI
发表日期
2021
ISBN
978-1-6654-0536-2
会议录名称
页码
1351-1358
会议日期
27-31 Dec. 2021
会议地点
Sanya, China
摘要
In this paper, we present a novel path planning algorithm to achieve fast path planning in complex environments. Most existing path planning algorithms are difficult to quickly find a feasible path in complex environments or even fail. However, our proposed framework can overcome this difficulty by using a learning-based prediction module and a sampling-based path planning module. The prediction module utilizes an auto-encoder-decoder-like convolutional neural network (CNN) to output a promising region where the feasible path probably lies in. In this process, the environment is treated as RGB image to feed in our designed CNN module, and the output is also RGB image. No extra computation is required so that we can maintain a high processing speed of 60 frame-per-second (FPS). Incorporated with a sampling-based path planner, we can extract a feasible path from the output image so that the robot can track it from start to goal. To demonstrate the advantage of the proposed algorithm, we compare it with conventional path planning algorithms in a series of simulation experiments. The results reveal that the proposed algorithm can achieve much better performance in terms of planning time, success rate, and path length.
关键词
学校署名
通讯
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20221611977456
EI主题词
Complex networks ; Convolutional neural networks
EI分类号
Computer Systems and Equipment:722
Scopus记录号
2-s2.0-85128184868
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9739261
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/331192
专题工学院_电子与电气工程系
作者单位
1.Chinese University of Hong Kong,Department of Electronic Engineering,Hong Kong,Hong Kong
2.Baidu Research (US),United States
3.Tencent Robotics X,Shenzhen,China
4.Soochow University,School of Mechanical and Electric Engineering,Suzhou,China
5.Southern University of Science and Technology,Department of Electronic and Electrical Engineering,Shenzhen,China
6.Shenzhen Research Institute,Chinese University of Hong Kong,Shenzhen,China
通讯作者单位电子与电气工程系
推荐引用方式
GB/T 7714
Liu,Jianbang,Li,Baopu,Li,Tingguang,et al. Learning-based Fast Path Planning in Complex Environments[C],2021:1351-1358.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liu,Jianbang]的文章
[Li,Baopu]的文章
[Li,Tingguang]的文章
百度学术
百度学术中相似的文章
[Liu,Jianbang]的文章
[Li,Baopu]的文章
[Li,Tingguang]的文章
必应学术
必应学术中相似的文章
[Liu,Jianbang]的文章
[Li,Baopu]的文章
[Li,Tingguang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。