中文版 | English
题名

Correlated Multi-objective Multi-fidelity Optimization for HLS Directives Design

作者
通讯作者Hao Yu; Bei Yu
共同第一作者Qi Sun
发表日期
2022-04
DOI
发表期刊
ISSN
1084-4309
EISSN
1557-7309
卷号27期号:4页码:1-27
摘要

High-level synthesis (HLS) tools have gained great attention in recent years because it emancipates engineers from the complicated and heavy hardware description language writing and facilitates the implementations of modern applications (e.g., deep learning models) on Field-programmable Gate Array (FPGA), by using high-level languages and HLS directives. However, finding good HLS directives is challenging, due to the time-consuming design processes, the balances among different design objectives, and the diverse fidelities (accuracies of data) of the performance values between the consecutive FPGA design stages.To find good HLS directives, a novel automatic optimization algorithm is proposed to explore the Pareto designs of the multiple objectives while making full use of the data with different fidelities from different FPGA design stages. Firstly, a non-linear Gaussian process (GP) is proposed to model the relationships among the different FPGA design stages. Secondly, for the first time, the GP model is enhanced as correlated GP (CGP) by considering the correlations between the multiple design objectives, to find better Pareto designs. Furthermore, we extend our model to be a deep version deep CGP (DCGP) by using the deep neural network to improve the kernel functions in Gaussian process models, to improve the characterization capability of the models, and learn better feature representations. We test our design method on some public benchmarks (including general matrix multiplication and sparse matrix-vector multiplication) and deep learning-based object detection model iSmart2 on FPGA. Experimental results show that our methods outperform the baselines significantly and facilitate the deep learning designs on FPGA.

关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
Research Grants Council of Hong Kong SAR[CUHK14209420] ; Innovation and Technology Fund[PRP/065/20FX]
WOS研究方向
Computer Science
WOS类目
Computer Science, Hardware & Architecture ; Computer Science, Software Engineering
WOS记录号
WOS:000802852900003
出版者
EI入藏号
20222312196975
EI主题词
Computer hardware description languages ; Deep neural networks ; Gaussian distribution ; Gaussian noise (electronic) ; High level languages ; High level synthesis ; Integrated circuit design ; Multiobjective optimization ; Object detection
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Semiconductor Devices and Integrated Circuits:714.2 ; Logic Elements:721.2 ; Computer Programming Languages:723.1.1 ; Data Processing and Image Processing:723.2 ; Computer Applications:723.5 ; Optimization Techniques:921.5 ; Probability Theory:922.1 ; Mathematical Statistics:922.2
来源库
人工提交
引用统计
被引频次[WOS]:13
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/332756
专题南方科技大学
工学院_深港微电子学院
作者单位
1.The Chinese University of Hong Kong
2.Synopsys
3.Fudan University
4.Southern University of Science and Technology
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Qi Sun,Tinghuan Chen,Siting Liu,et al. Correlated Multi-objective Multi-fidelity Optimization for HLS Directives Design[J]. ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS,2022,27(4):1-27.
APA
Qi Sun.,Tinghuan Chen.,Siting Liu.,Jin Miao.,Jianli Chen.,...&Bei Yu.(2022).Correlated Multi-objective Multi-fidelity Optimization for HLS Directives Design.ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS,27(4),1-27.
MLA
Qi Sun,et al."Correlated Multi-objective Multi-fidelity Optimization for HLS Directives Design".ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS 27.4(2022):1-27.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Correlated Multi-obj(1676KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Qi Sun]的文章
[Tinghuan Chen]的文章
[Siting Liu]的文章
百度学术
百度学术中相似的文章
[Qi Sun]的文章
[Tinghuan Chen]的文章
[Siting Liu]的文章
必应学术
必应学术中相似的文章
[Qi Sun]的文章
[Tinghuan Chen]的文章
[Siting Liu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。