题名 | Embedding decomposition for artifacts removal in EEG signals |
作者 | |
通讯作者 | Quanying,Liu |
发表日期 | 2022-04-01
|
DOI | |
发表期刊 | |
ISSN | 1741-2560
|
EISSN | 1741-2552
|
卷号 | 19期号:2页码:026052 |
摘要 | Objective.Electroencephalogram (EEG) recordings are often contaminated with artifacts. Various methods have been developed to eliminate or weaken the influence of artifacts. However, most of them rely on prior experience for analysis.Approach.Here, we propose an deep learning framework to separate neural signal and artifacts in the embedding space and reconstruct the denoised signal, which is called DeepSeparator. DeepSeparator employs an encoder to extract and amplify the features in the raw EEG, a module called decomposer to extract the trend, detect and suppress artifact and a decoder to reconstruct the denoised signal. Besides, DeepSeparator can extract the artifact, which largely increases the model interpretability.Main results.The proposed method is tested with a semi-synthetic EEG dataset and a real task-related EEG dataset, suggesting that DeepSeparator outperforms the conventional models in both EOG and EMG artifact removal.Significance.DeepSeparator can be extended to multi-channel EEG and data with any arbitrary length. It may motivate future developments and application of deep learning-based EEG denoising. The code for DeepSeparator is available athttps://github.com/ncclabsustech/DeepSeparator. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | National Natural Science Foundation of China[62001205]
; National Key Research and Development Program of China[2021YFF1200800]
; Guangdong Natural Science Foundation[2019A1515111038]
; Shenzhen Science and Technology Innovation Committee[20200925155957004,"KCXFZ2020122117340001"]
; Shenzhen-Hong KongMacao Science and Technology Innovation Project[SGDX2020110309280100]
; Shenzhen Key Laboratory of Smart Healthcare Engineering[ZDSYS2020 0811144003009]
|
WOS研究方向 | Engineering
; Neurosciences & Neurology
|
WOS类目 | Engineering, Biomedical
; Neurosciences
|
WOS记录号 | WOS:000785571000001
|
出版者 | |
EI入藏号 | 20222112133044
|
EI主题词 | Biomedical signal processing
; Deep learning
; Embeddings
; Signal denoising
; Signal reconstruction
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
; Medicine and Pharmacology:461.6
; Information Theory and Signal Processing:716.1
; Artificial Intelligence:723.4
|
来源库 | 人工提交
|
引用统计 |
被引频次[WOS]:20
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/332879 |
专题 | 工学院_生物医学工程系 |
作者单位 | 1.Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China 2.School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, People's Republic of China |
第一作者单位 | 生物医学工程系 |
通讯作者单位 | 生物医学工程系 |
第一作者的第一单位 | 生物医学工程系 |
推荐引用方式 GB/T 7714 |
Junjie,Yu,Chenyi,Li,Kexin,Lou,et al. Embedding decomposition for artifacts removal in EEG signals[J]. Journal of Neural Engineering,2022,19(2):026052.
|
APA |
Junjie,Yu,Chenyi,Li,Kexin,Lou,Chen,Wei,&Quanying,Liu.(2022).Embedding decomposition for artifacts removal in EEG signals.Journal of Neural Engineering,19(2),026052.
|
MLA |
Junjie,Yu,et al."Embedding decomposition for artifacts removal in EEG signals".Journal of Neural Engineering 19.2(2022):026052.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Yu_2022_J._Neural_En(6701KB) | -- | -- | 开放获取 | -- | 浏览 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论