中文版 | English
题名

Embedding decomposition for artifacts removal in EEG signals

作者
通讯作者Quanying,Liu
发表日期
2022-04-01
DOI
发表期刊
ISSN
1741-2560
EISSN
1741-2552
卷号19期号:2页码:026052
摘要

Objective.Electroencephalogram (EEG) recordings are often contaminated with artifacts. Various methods have been developed to eliminate or weaken the influence of artifacts. However, most of them rely on prior experience for analysis.Approach.Here, we propose an deep learning framework to separate neural signal and artifacts in the embedding space and reconstruct the denoised signal, which is called DeepSeparator. DeepSeparator employs an encoder to extract and amplify the features in the raw EEG, a module called decomposer to extract the trend, detect and suppress artifact and a decoder to reconstruct the denoised signal. Besides, DeepSeparator can extract the artifact, which largely increases the model interpretability.Main results.The proposed method is tested with a semi-synthetic EEG dataset and a real task-related EEG dataset, suggesting that DeepSeparator outperforms the conventional models in both EOG and EMG artifact removal.Significance.DeepSeparator can be extended to multi-channel EEG and data with any arbitrary length. It may motivate future developments and application of deep learning-based EEG denoising. The code for DeepSeparator is available athttps://github.com/ncclabsustech/DeepSeparator.

关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China[62001205] ; National Key Research and Development Program of China[2021YFF1200800] ; Guangdong Natural Science Foundation[2019A1515111038] ; Shenzhen Science and Technology Innovation Committee[20200925155957004,"KCXFZ2020122117340001"] ; Shenzhen-Hong KongMacao Science and Technology Innovation Project[SGDX2020110309280100] ; Shenzhen Key Laboratory of Smart Healthcare Engineering[ZDSYS2020 0811144003009]
WOS研究方向
Engineering ; Neurosciences & Neurology
WOS类目
Engineering, Biomedical ; Neurosciences
WOS记录号
WOS:000785571000001
出版者
EI入藏号
20222112133044
EI主题词
Biomedical signal processing ; Deep learning ; Embeddings ; Signal denoising ; Signal reconstruction
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Medicine and Pharmacology:461.6 ; Information Theory and Signal Processing:716.1 ; Artificial Intelligence:723.4
来源库
人工提交
引用统计
被引频次[WOS]:20
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/332879
专题工学院_生物医学工程系
作者单位
1.Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
2.School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, People's Republic of China
第一作者单位生物医学工程系
通讯作者单位生物医学工程系
第一作者的第一单位生物医学工程系
推荐引用方式
GB/T 7714
Junjie,Yu,Chenyi,Li,Kexin,Lou,et al. Embedding decomposition for artifacts removal in EEG signals[J]. Journal of Neural Engineering,2022,19(2):026052.
APA
Junjie,Yu,Chenyi,Li,Kexin,Lou,Chen,Wei,&Quanying,Liu.(2022).Embedding decomposition for artifacts removal in EEG signals.Journal of Neural Engineering,19(2),026052.
MLA
Junjie,Yu,et al."Embedding decomposition for artifacts removal in EEG signals".Journal of Neural Engineering 19.2(2022):026052.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Yu_2022_J._Neural_En(6701KB)----开放获取--浏览
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Junjie,Yu]的文章
[Chenyi,Li]的文章
[Kexin,Lou]的文章
百度学术
百度学术中相似的文章
[Junjie,Yu]的文章
[Chenyi,Li]的文章
[Kexin,Lou]的文章
必应学术
必应学术中相似的文章
[Junjie,Yu]的文章
[Chenyi,Li]的文章
[Kexin,Lou]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Yu_2022_J._Neural_Eng._19_026052.pdf
格式: Adobe PDF
文件名: Yu_2022_J._Neural_Eng._19_026052.pdf
格式: Adobe PDF
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。