题名 | Methods for deep learning model failure detection and model adaption: A survey |
作者 | |
DOI | |
发表日期 | 2021
|
会议名称 | IEEE International Symposium on Software Reliability Engineering Workshops
|
ISBN | 978-1-6654-2604-6
|
会议录名称 | |
页码 | 218-223
|
会议日期 | 2021-10
|
会议地点 | Wuhan, China
|
摘要 | In real-world applications, deep learning models may fail to predict due to service switch, system upgrade, or other environmental changes. One main reason is that the model lacks generalization ability when data distribution changes. To detect model failures in advance, a direct and effective method is to monitor the data distribution in real time. This paper provides a taxonomy of data distribution shift detection methods, which is an important issue in model failure perception, and also gives a framework on model adaption and generalization under distribution shift scenario. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20221311852401
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
|
Scopus记录号 | 2-s2.0-85126999473
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9700377 |
引用统计 |
被引频次[WOS]:2
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/333010 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Huawei Technology Co.,Ltd.,Rams Reliability Technology Lab,Shenzhen,China 2.Huawei Technology Co.,Ltd.,TTE-DE Rams Lab,Shenzhen,China 3.Southern University of Science and Technology,Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Shenzhen,China |
推荐引用方式 GB/T 7714 |
Wu,Xiaoyu,Hu,Zheng,Pei,Ke,et al. Methods for deep learning model failure detection and model adaption: A survey[C],2021:218-223.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
2021 Methods_for_dee(361KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论