题名 | MTMGNN: Multi-time multi-graph neural network for metro passenger flow prediction |
作者 | |
通讯作者 | Jiang, Renhe; Song, Xuan |
发表日期 | 2022-04-01
|
DOI | |
发表期刊 | |
ISSN | 1384-6175
|
EISSN | 1573-7624
|
卷号 | 27期号:1 |
摘要 | The passenger flow prediction of the public metro system is a core and critical part of the intelligent transportation system, and is essential for traffic management, metro planning, and emergency safety measures. Most methods chose the recent segment from historical data as input to predict the future traffic flow; however, this would lead to the loss of the inherent characteristic information of the metro passenger flow's daily morning and evening peak. Therefore, this study aggregates the recent-term and long-term information and use a long-term Gated Convolutional Neural Network (Gated CNN) to extract the temporal feature from the complex historical data. On the other hand, typical models did not consider the different spatial dependencies between different metro stations; this work proposes various adjacent relationships to characterize the degree of association between nodes. In order to extract spatial and temporal features at the same time, the historical data of recent-term and long-term is merged together to extract spatial features through a multi-graph neural network module. By combining Gated CNN and multi-graph module, we propose a multi-time multi-graph neural network named MTMGNN for metro passenger flow prediction. The result of our experiment on real-world datasets shows that our model MTMGNN is better than all state-of-art methods. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
WOS研究方向 | Computer Science
; Physical Geography
|
WOS类目 | Computer Science, Information Systems
; Geography, Physical
|
WOS记录号 | WOS:000787149800001
|
出版者 | |
EI入藏号 | 20221712039422
|
EI主题词 | Convolutional neural networks
; Data mining
; Flow graphs
; Forecasting
; Intelligent systems
; Subway stations
|
EI分类号 | Passenger Railroad Transportation:433.2
; Railway Plant and Structures, General:681.1
; Data Processing and Image Processing:723.2
; Artificial Intelligence:723.4
; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:15
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/333460 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Southern Univ Sci & Technol, SUSTech UTokyo Joint Res Ctr Super Smart City, Dept Comp Sci & Engn, Shenzhen, Peoples R China 2.Univ Tokyo, Ctr Spatial Informat Sci, Tokyo, Japan 3.Huawei Technol Co LTD, Shenzhen, Peoples R China 4.Thinvent Technol Co LTD, Nanchang, Jiangxi, Peoples R China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Yin, Du,Jiang, Renhe,Deng, Jiewen,et al. MTMGNN: Multi-time multi-graph neural network for metro passenger flow prediction[J]. GEOINFORMATICA,2022,27(1).
|
APA |
Yin, Du.,Jiang, Renhe.,Deng, Jiewen.,Li, Yongkang.,Xie, Yi.,...&Shang, Jedi S..(2022).MTMGNN: Multi-time multi-graph neural network for metro passenger flow prediction.GEOINFORMATICA,27(1).
|
MLA |
Yin, Du,et al."MTMGNN: Multi-time multi-graph neural network for metro passenger flow prediction".GEOINFORMATICA 27.1(2022).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论