中文版 | English
题名

MTMGNN: Multi-time multi-graph neural network for metro passenger flow prediction

作者
通讯作者Jiang, Renhe; Song, Xuan
发表日期
2022-04-01
DOI
发表期刊
ISSN
1384-6175
EISSN
1573-7624
卷号27期号:1
摘要
The passenger flow prediction of the public metro system is a core and critical part of the intelligent transportation system, and is essential for traffic management, metro planning, and emergency safety measures. Most methods chose the recent segment from historical data as input to predict the future traffic flow; however, this would lead to the loss of the inherent characteristic information of the metro passenger flow's daily morning and evening peak. Therefore, this study aggregates the recent-term and long-term information and use a long-term Gated Convolutional Neural Network (Gated CNN) to extract the temporal feature from the complex historical data. On the other hand, typical models did not consider the different spatial dependencies between different metro stations; this work proposes various adjacent relationships to characterize the degree of association between nodes. In order to extract spatial and temporal features at the same time, the historical data of recent-term and long-term is merged together to extract spatial features through a multi-graph neural network module. By combining Gated CNN and multi-graph module, we propose a multi-time multi-graph neural network named MTMGNN for metro passenger flow prediction. The result of our experiment on real-world datasets shows that our model MTMGNN is better than all state-of-art methods.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
WOS研究方向
Computer Science ; Physical Geography
WOS类目
Computer Science, Information Systems ; Geography, Physical
WOS记录号
WOS:000787149800001
出版者
EI入藏号
20221712039422
EI主题词
Convolutional neural networks ; Data mining ; Flow graphs ; Forecasting ; Intelligent systems ; Subway stations
EI分类号
Passenger Railroad Transportation:433.2 ; Railway Plant and Structures, General:681.1 ; Data Processing and Image Processing:723.2 ; Artificial Intelligence:723.4 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
来源库
Web of Science
引用统计
被引频次[WOS]:15
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/333460
专题工学院_计算机科学与工程系
作者单位
1.Southern Univ Sci & Technol, SUSTech UTokyo Joint Res Ctr Super Smart City, Dept Comp Sci & Engn, Shenzhen, Peoples R China
2.Univ Tokyo, Ctr Spatial Informat Sci, Tokyo, Japan
3.Huawei Technol Co LTD, Shenzhen, Peoples R China
4.Thinvent Technol Co LTD, Nanchang, Jiangxi, Peoples R China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Yin, Du,Jiang, Renhe,Deng, Jiewen,et al. MTMGNN: Multi-time multi-graph neural network for metro passenger flow prediction[J]. GEOINFORMATICA,2022,27(1).
APA
Yin, Du.,Jiang, Renhe.,Deng, Jiewen.,Li, Yongkang.,Xie, Yi.,...&Shang, Jedi S..(2022).MTMGNN: Multi-time multi-graph neural network for metro passenger flow prediction.GEOINFORMATICA,27(1).
MLA
Yin, Du,et al."MTMGNN: Multi-time multi-graph neural network for metro passenger flow prediction".GEOINFORMATICA 27.1(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yin, Du]的文章
[Jiang, Renhe]的文章
[Deng, Jiewen]的文章
百度学术
百度学术中相似的文章
[Yin, Du]的文章
[Jiang, Renhe]的文章
[Deng, Jiewen]的文章
必应学术
必应学术中相似的文章
[Yin, Du]的文章
[Jiang, Renhe]的文章
[Deng, Jiewen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。