中文版 | English
题名

Predicting Citywide Crowd Dynamics at Big Events: A Deep Learning System

作者
通讯作者Song, Xuan
发表日期
2022-02-01
DOI
发表期刊
ISSN
2157-6904
EISSN
2157-6912
卷号13期号:2
摘要
Event crowd management has been a significant research topic with high social impact. When some big events happen such as an earthquake, typhoon, and national festival, crowd management becomes the first priority for governments (e.g., police) and public service operators (e.g., subway/bus operator) to protect people's safety or maintain the operation of public infrastructures. However, under such event situations, human behavior will become very different from daily routines, which makes prediction of crowd dynamics at big events become highly challenging, especially at a citywide level. Therefore in this study, we aim to extract the "deep" trend only from the current momentary observations and generate an accurate prediction for the trend in the short future, which is considered to be an effective way to deal with the event situations. Motivated by these, we build an online system called DeepUrbanEvent, which can iteratively take citywide crowd dynamics from the current one hour as input and report the prediction results for the next one hour as output. A novel deep learning architecture built with recurrent neural networks is designed to effectively model these highly complex sequential data in an analogous manner to video prediction tasks. Experimental results demonstrate the superior performance of our proposed methodology to the existing approaches. Lastly, we apply our prototype system to multiple big real-world events and show that it is highly deployable as an online crowd management system.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
Japan Society for the Promotion of Science (JSPS)["20K19859","20K19782"]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Information Systems
WOS记录号
WOS:000784457600003
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/333476
专题南方科技大学
作者单位
1.Univ Tokyo, Tokyo, Japan
2.Southern Univ Sci & Technol, SUSTech UTokyo Joint Res Ctr Super Smart City, Shenzhen, Peoples R China
第一作者单位南方科技大学
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Jiang, Renhe,Cai, Zekun,Wang, Zhaonan,et al. Predicting Citywide Crowd Dynamics at Big Events: A Deep Learning System[J]. ACM Transactions on Intelligent Systems and Technology,2022,13(2).
APA
Jiang, Renhe.,Cai, Zekun.,Wang, Zhaonan.,Yang, Chuang.,Fan, Zipei.,...&Shibasaki, Ryosuke.(2022).Predicting Citywide Crowd Dynamics at Big Events: A Deep Learning System.ACM Transactions on Intelligent Systems and Technology,13(2).
MLA
Jiang, Renhe,et al."Predicting Citywide Crowd Dynamics at Big Events: A Deep Learning System".ACM Transactions on Intelligent Systems and Technology 13.2(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Jiang, Renhe]的文章
[Cai, Zekun]的文章
[Wang, Zhaonan]的文章
百度学术
百度学术中相似的文章
[Jiang, Renhe]的文章
[Cai, Zekun]的文章
[Wang, Zhaonan]的文章
必应学术
必应学术中相似的文章
[Jiang, Renhe]的文章
[Cai, Zekun]的文章
[Wang, Zhaonan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。