中文版 | English
题名

A Space-Time Neural Network for Analysis of Stress Evolution under DC Current Stressing

作者
发表日期
2022
DOI
发表期刊
ISSN
0278-0070
EISSN
1937-4151
卷号PP期号:99页码:1-1
摘要

The electromigration (EM)-induced reliability issues in very large scale integration (VLSI) circuits have attracted increased attention due to the continuous technology scaling. Traditional EM models often lead to overly pessimistic prediction incompatible with the shrinking design margin in future technology nodes. Motivated by the latest success of neural networks in solving differential equations in physical problems, we propose a novel mesh-free model to compute EM-induced stress evolution in VLSI circuits. The model utilizes a specifically crafted space-time physics-informed neural network (STPINN) as the solver for EM analysis. By coupling the physics-based EM analysis with dynamic temperature incorporating Joule heating and via effect, we can observe stress evolution along multi-segment interconnect trees under constant, time-dependent and space-time-dependent temperature during the void nucleation phase. The proposed STPINN method obviates the time discretization and meshing required in conventional numerical stress evolution analysis and offers significant computational savings. Numerical comparison with competing schemes demonstrates a 2×∼52× speedup with a satisfactory accuracy.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
EI入藏号
20221611993883
EI主题词
Circuit Simulation ; Differential Equations ; Failure Analysis ; Integrated Circuits ; Learning Systems ; Mesh Generation ; Numerical Methods ; Timing Circuits
EI分类号
Electricity: Basic Concepts And Phenomena:701.1 ; Electric Network Analysis:703.1.1 ; Pulse Circuits:713.4 ; Semiconductor Devices And Integrated Circuits:714.2 ; Computer Applications:723.5 ; Calculus:921.2 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 ; Numerical Methods:921.6
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85128329743
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9751613
引用统计
被引频次[WOS]:5
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/333634
专题工学院_深港微电子学院
工学院_电子与电气工程系
作者单位
1.Department of Micro/Nano Electronics, Shanghai Jiao Tong University
2.Department of Electrical and Electronic Engineering, The University of Hong Kong
3.School of Microelectronics, Southern University of Science and Technology
推荐引用方式
GB/T 7714
Hou,Tianshu,Wong,Ngai,Chen,Quan,et al. A Space-Time Neural Network for Analysis of Stress Evolution under DC Current Stressing[J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS,2022,PP(99):1-1.
APA
Hou,Tianshu,Wong,Ngai,Chen,Quan,Ji,Zhigang,&Chen,Hai Bao.(2022).A Space-Time Neural Network for Analysis of Stress Evolution under DC Current Stressing.IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS,PP(99),1-1.
MLA
Hou,Tianshu,et al."A Space-Time Neural Network for Analysis of Stress Evolution under DC Current Stressing".IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS PP.99(2022):1-1.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
10.1109@TCAD.2022.31(3914KB)----开放获取--浏览
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Hou,Tianshu]的文章
[Wong,Ngai]的文章
[Chen,Quan]的文章
百度学术
百度学术中相似的文章
[Hou,Tianshu]的文章
[Wong,Ngai]的文章
[Chen,Quan]的文章
必应学术
必应学术中相似的文章
[Hou,Tianshu]的文章
[Wong,Ngai]的文章
[Chen,Quan]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@TCAD.2022.3166103.pdf
格式: Adobe PDF
文件名: 10.1109@TCAD.2022.3166103.pdf
格式: Adobe PDF
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。