题名 | 基于二维材料限域或界面效应的非制冷红外光探测研究 |
其他题名 | RESEARCH OF UNCOOLED INFRARED DETECTION BASED ON THEIRCONFINEMENT OR INTERFACIAL EFFECT OFTWO-DIMENSIONAL MATERIALS
|
姓名 | |
姓名拼音 | LI Alei
|
学号 | 11749332
|
学位类型 | 博士
|
学位专业 | 070207 光学
|
学科门类/专业学位类别 | 物理学
|
导师 | |
导师单位 | 物理系
|
论文答辩日期 | 2021-11-18
|
论文提交日期 | 2022-05-09
|
学位授予单位 | 哈尔滨工业大学
|
学位授予地点 | 哈尔滨
|
摘要 | 光电探测器是一种将电磁波信号转化为电信号的仪器设备,根据其工作波段可以将其分为紫外光探测器、可见光探测器和红外光探测器三大类。目前,对光电探测器研究和产业化热点主要集中在红外光探测器上。传统的红外光探测器主要包括碲镉汞、量子阱以及超晶格等探测器。然而,这些传统红外光探测器具有成本高、应用性能较差等缺点,不能满足新一代小型化、宽谱、高灵敏度、透明和可印刷柔性光探测器的需求。 随着石墨烯的发现,越来越多的二维(2D)材料被大家所发现,其优异的光电性能以及独特的原子结构使得2D材料不仅在光电探测领域和半导体行业拥有巨大的应用前景,而且在新型的微电子器件中也展现出了巨大的应用潜能。提升2D材料光电探测器的光响应度和比探测率、拓宽其探测光谱范围,是将其应用于实际生产或生活中遇到的严峻挑战。为了探明2D材料光电探测器的响应机制从而提升其综合性能,本文在深入研究2D材料光学和电学性能基础上,设计并构筑了新型2D材料光电探测器:h-BN/MoTe2/石墨烯/SnS2/h-BN范德华(vdW)异质结宽谱探测器、h-BN保护的MoS2/WSe2 II型异质结光电探测器和FePSe3辐射热探测器,并对它们的响应机理进行了系统研究。这些光电探测器不仅满足目前对光电探测器高灵敏度、高速、宽波段的要求,其工作机理的系统研究还可以为下一代的光通信技术提供新的设计思路。 首先,通过化学气相输运法合成了MoTe2和SnS2块体单晶。其次,利用机械剥离、干法转移和标准的电子束曝光工艺制备了h-BN/MoTe2/石墨烯/SnS2/h-BN p-g-n光电探测器。进一步,系统研究了h-BN/MoTe2/石墨烯/SnS2/h-BN p-g-n异质结的基本物性和光电响应性能。在该异质结光电探测器中包含几个独特的设计:1)利用p型MoTe2与n型SnS2界面处的内建电场有效分离光生载流子;2)MoTe2和SnS2间的石墨烯不仅拓宽了探测波谱范围而且还可以减少电荷陷阱并改善界面质量,增强光吸收以及范德华p-g-n结中的电荷传输;3)采用h-BN夹层结构降低器件的噪声,提升探测器性能。最后,研究了石墨烯中间层的厚度对探测器性能的影响,发现包含5-7层石墨烯中间层的vdW p-g-n器件的整体光响应性能最优。值得注意的是,在紫外到近红外超宽光谱范围内,该异质结光电探测器的响应度可以超过2.6×103 AW−1且其比探测率D*亦可达到1013 Jones,这比目前已报道基于MoTe2的光电探测器高至少两个数量级。在短波红外光(SWIR)激发下,该探测器的D*有所降低,但也可以达到1.06×1011 Jones,该结果可以与商用非制冷SWIR Ge-on-Si光电探测器相媲美。该工作可以为宽波段、超高灵敏度的新型光电探测器的设计提供一种可行的策略。 通过化学气相输运法合成了MoS2和WSe2块体单晶,并利用机械剥离、干法转移和标准的电子束曝光工艺分别制备MoS2、WSe2光电探测器以及h-BN保护的MoS2/WSe2 II型异质结光电探测器。进一步,研究了这三种探测器的光电性能。对比发现,MoS2/WSe2 II型异质结结构中的层间激子跃迁成功地将探测器的响应波谱范围拓宽至超越单一材料带隙的近红外波段。值得注意的是,在1064 nm近红外光(NIR)激发下,该探测器的响应度可以达到4.8×103 AW−1,这比目前已知的2D/2D范德华p-n结NIR光电探测器的响应度都高。该工作不仅获得了一种可以超越单一材料带隙限制的高响应度光电探测器,还为新一代、宽波段光电探测器提供了一种可行的设计思路。 通过化学气相输运法合成了三元的金属三卤磷系化合物FePSe3块体单晶,并利用机械剥离、干法转移和标准的电子束曝光工艺制备了FePSe3辐射热探测器。进一步,对不同厚度FePSe3辐射热探测器的基础性能和光响应性能进行了深入研究。该辐射热探测器包含几个特点:1)室温下该材料的电阻温度系数(TCR)几乎不随厚度的变化而发生变化且可以达到−2.96% K−1,这略高于商用辐射热探测器中VOx的TCR值;2)FePSe3材料中能量处于0.75-0.89 eV的5T2g-5Eg跃迁成功地将材料的吸收波段拓宽至短波红外波段;3)FePSe3材料的2D范德华堆垛形成了天然悬空结构减少了FePSe3与外界环境的热交换,进一步提升了辐射热探测器的光响应性能。在紫外-可见光激发下FePSe3辐射热探测器的响应度和D*分别位于1010-1011 VW−1和1011-1012 Jones范围内,且对FePSe3材料厚度的依赖性较强。在1550 nm光激发下,FePSe3辐射热探测器的响应度和D*分别为1×108 VW−1和1×109 Jones,这比目前商用VOx辐射热探测器高2-3个数量级。该工作不仅揭示了FePSe3辐射热探测器的响应机理,还为新型的、高灵敏度的辐射热探测器提供了新方法。 通过上述研究,本文为具有宽谱、高灵敏度的2D材料光电探测器的制备提供了可行的设计思路。在深入研究其光响应机理的基础上,对其结构进行了优化,为下一代的光通信技术提供实验支撑和借鉴。 |
其他摘要 | Photodetector is a device that converts electromagnetic signals into electrical signals. According to the working-bands of photodetectors, it can be classified into three categories: ultraviolet detectors, visible light detectors and infrared detectors. At present, the research and industrialization hotspots of photodetectors are mainly focused on infrared detectors. The traditional infrared detectors mainly include HgCdTe, quantum wells, and superlattice photodetectors. However, these traditional infrared photodetectors have the disadvantages of high cost and poor performance, which cannot meet the requirements for the next generation photodetector with miniaturized, broad-spectrum, excellent sensitivity, transparent and printable flexible properties. |
关键词 | |
其他关键词 | |
语种 | 中文
|
培养类别 | 联合培养
|
入学年份 | 2017
|
学位授予年份 | 2022-01
|
参考文献列表 | [1] Rogalski A. Infrared Detectors [M]. CRC Press. 2010: 23-40. [2] Koppens F H L, Mueller T, Avouris P, et al. Photodetectors Based on Graphene, Other Two-Dimensional Materials and Hybrid Systems[J]. Nature Nanotechnology, 2014, 9(10): 780-793. [3] Li J, Niu L, Zheng Z, et al. Photosensitive Graphene Transistors[J]. Advanced Materials, 2014, 26(31): 5239-5273. [4] Sun Z, Chang H. Graphene and Graphene-Like Two-Dimensional Materials in Photodetection: Mechanisms and Methodology[J]. ACS Nano, 2014, 8(5): 4133-4156. [5] Xie C, Mak C, Tao X, et al. Photodetectors Based on Two‐Dimensional Layered Materials Beyond Graphene[J]. Advanced Functional Materials, 2017, 27(19): 1603886. [6] Rogalski A. Infrared Detectors: an Overview[J]. Infrared Physics & Technology, 2002, 43(3-5): 187-210. [7] Rogalski A. Infrared Detectors: Status and Trends[J]. Progress in Quantum Electronics, 2003, 27(2-3): 59-210. [8]叶玉堂, 刘爽. 红外与微光技术 [M]. 北京: 国防工业出版社. 2010: 190-232. [10]Novoselov K S, Geim A K, Morozov S V, et al. Two-Dimensional Gas of Massless Dirac Fermions in Graphene[J]. Nature, 2005, 438(7065): 197-200. [11] Zhang Y B, Tan Y W, Stormer H L, et al. Experimental Observation of the Quantum Hall Effect and Berry's Phase in Graphene[J]. Nature, 2005, 438(7065): 201-204. [12] Mak K F, Lee C, Hone J, et al. Atomically Thin MoS2: A New Direct-Gap Semiconductor[J]. Physical Review Letters, 2010, 105(13): 136805. [13] Splendiani A, Sun L, Zhang Y B, et al. Emerging Photoluminescence in Monolayer MoS2[J]. Nano Letters, 2010, 10(4): 1271-1275. [14] Liu M, Yin X B, Ulin-Avila E, et al. A Graphene-Based Broadband Optical Modulator[J]. Nature, 2011, 474(7349): 64-67. [15] Furchi M, Urich A, Pospischil A, et al. Microcavity-Integrated Graphene Photodetector[J]. Nano Letters, 2012, 12(6): 2773-2777. [16] Gan X T, Gao Y D, Mak K F, et al. Controlling the Spontaneous Emission Rate of Monolayer MoS2 in a Photonic Crystal Nanocavity[J]. Applied Physics Letters, 2013, 103(18): 181119. [17] Gan X T, Shiue R J, Gao Y D, et al. Chip-Integrated Ultrafast Graphene Photodetector with High Responsivity[J]. Nature Photonics, 2013, 7(11): 883-887. [18] Geim A K, Grigorieva I V. Van Der Waals Heterostructures[J]. Nature, 2013, 499(7459): 419-425. [19] Pospischil A, Humer M, Furchi M M, et al. CMOS-Compatible Graphene Photodetector Covering All Optical Communication Bands[J]. Nature Photonics, 2013, 7(11): 892-896. [20] Wang X M, Cheng Z Z, Xu K, et al. High-Responsivity Graphene/Silicon-Heterostructure Waveguide Photodetectors[J]. Nature Photonics, 2013, 7(11): 888-891. [21] Sobhani A, Lauchner A, Najmaei S, et al. Enhancing the Photocurrent and Photoluminescence of Single Crystal Monolayer MoS2 with Resonant Plasmonic Nanoshells[J]. Applied Physics Letters, 2014, 104(3): 031112. [22] Xia F N, Mueller T, Lin Y M, et al. Ultrafast Graphene Photodetector[J]. Nature Nanotechnology, 2009, 4(12): 839-843. [23] Yin Z Y, Li H, Li H, et al. Single-Layer MoS2 Phototransistors[J]. ACS Nano, 2012, 6(1): 74-80. [24] Chang Y H, Zhang W, Zhu Y, et al. Monolayer MoSe2 Grown by Chemical Vapor Deposition for Fast Photodetection[J]. ACS Nano, 2014, 8(8): 8582-8590. [25] Cheng R, Li D H, Zhou H L, et al. Electroluminescence and Photocurrent Generation from Atomically Sharp WSe2/MoS2 Heterojunction P-N Diodes[J]. Nano Letters, 2014, 14(10): 5590-5597. [26] Xie C, Yan F. Flexible Photodetectors Based on Novel Functional Materials[J]. Small, 2017, 13(43): 1701822. [27] Long M S, Wang P, Fang H H, et al. Progress, Challenges, and Opportunities for 2D Material Based Photodetectors[J]. Advanced Functional Materials, 2019, 29(19): 1803807. [28] Wang J, Han J Y, Chen X Q, et al. Design Strategies for Two-Dimensional Material Photodetectors to Enhance Device Performance[J]. Infomat, 2019, 1(1): 33-53. [29] Sze S M, Ng K K. Physics of Semiconductor Devices, John Wiley & Sons[J]. New York, 1981, 68122-129. [30] Sze S M, Ng K K. Physics of Semiconductor Devices [M]. John wiley & sons. 2021: 79-401. [31] Bube R H. Photoelectronic Properties of Semiconductors [M]. Cambridge University Press. 1992: 18-44. [32] Watson J. Book Review: Fundamentals of Photonics. BEA Saleh and MC Teich Wiley Interscience[J]. Optics Laser Technology, 1992, 24(3): 177. [33] Konstantatos G, Sargent E H. Nanostructured Materials for Photon Detection[J]. Nature Nanotechnology, 2010, 5(6): 391-400. [34] Konstantatos G, Badioli M, Gaudreau L, et al. Hybrid Graphene–Quantum Dot Phototransistors with Ultrahigh Gain[J]. Nature Nanotechnology, 2012, 7(6): 363-368. [35] Sun Z H, Liu Z K, Li J H, et al. Infrared Photodetectors Based on CVD-Grown Graphene and PbS Quantum Dots with Ultrahigh Responsivity[J]. Advanced Materials, 2012, 24(43): 5878-5883. [36] Song J C W, Rudner M S, Marcus C M, et al. Hot Carrier Transport and Photocurrent Response in Graphene[J]. Nano Letters, 2011, 11(11): 4688-4692. [37] Xu X, Gabor N M, Alden J S, et al. Photo-Thermoelectric Effect at a Graphene Interface Junction[J]. Nano Letters, 2010, 10(2): 562-566. [38] Boyd R W. Radiometry and the Detection of Optical Radiation[J]. New York, 1983. [39] Novoselov K S, Geim A K, Morozov S V, et al. Electric Field Effect in Atomically Thin Carbon Films[J]. Science, 2004, 306(5696): 666-669. [40] Mueller T, Xia F N A, Avouris P. Graphene Photodetectors for High-Speed Optical Communications[J]. Nature Photonics, 2010, 4(5): 297-301. [41] Liu Y, Cheng R, Liao L, et al. Plasmon Resonance Enhanced Multicolour Photodetection by Graphene[J]. Nature Communications, 2011, 2(1): 1-7. [42] Fang Z, Liu Z, Wang Y, et al. Graphene-Antenna Sandwich Photodetector[J]. Nano Letters, 2012, 12(7): 3808-3813. [43] Chang H, Sun Z, Saito M, et al. Regulating Infrared Photoresponses in Reduced Graphene Oxide Phototransistors by Defect and Atomic Structure Control[J]. ACS Nano, 2013, 7(7): 6310-6320. [44] Zhang Y, Liu T, Meng B, et al. Broadband High Photoresponse from Pure Monolayer Graphene Photodetector[J]. Nature Communications, 2013, 4(1): 1-11. [45] Sun Z, Liu Z, Li J, et al. Infrared Photodetectors Based on CVD‐Grown Graphene and PbS Quantum Dots with Ultrahigh Responsivity[J]. Advanced Materials, 2012, 24(43): 5878-5883. [46] Zhao Z Y, Liu Q L. Study of the Layer-Dependent Properties of MoS2 Nanosheets with Different Crystal Structures by DFT Calculations[J]. Catalysis Science & Technology, 2018, 8(7): 1867-1879. [47] Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive Photodetectors Based on Monolayer MoS2[J]. Nature Nanotechnology, 2013, 8(7): 497-501. [48] Lee H S, Min S W, Chang Y G, et al. MoS2 Nanosheet Phototransistors with Thickness-Modulated Optical Energy Gap[J]. Nano Letters, 2012, 12(7): 3695-3700. [49] Zhang W, Huang J K, Chen C H, et al. High‐Gain Phototransistors Based on a CVD MoS2 Monolayer[J]. Advanced Materials, 2013, 25(25): 3456-3461. [50] Xia J, Huang X, Liu L-Z, et al. CVD Synthesis of Large-Area, Highly Crystalline MoSe2 Atomic Layers on Diverse Substrates and Application to Photodetectors[J]. Nanoscale, 2014, 6(15): 8949-8955. [51] Chang Y H, Zhang W, Zhu Y, et al. Photodetectors Based on Graphene, Other Two-Dimensional Materials and Hybrid Systems[J]. ACS Nano, 2014, 8(8): 8582-8590. [52] Abderrahmane A, Ko P J, Thu T V, et al. High Photosensitivity Few-Layered MoSe2 Back-Gated Field-Effect Phototransistors[J]. Nanotechnology, 2014, 25(36): 365202. [53] Huo N, Yang S, Wei Z, et al. Photoresponsive and Gas Sensing Field-Effect Transistors Based on Multilayer WS2 Nanoflakes[J]. Scientific Reports, 2014, 4(1): 1-9. [54] Perea‐López N, Elías A L, Berkdemir A, et al. Photosensor Device Based on Few‐Layered WS2 Films[J]. Advanced Functional Materials, 2013, 23(44): 5511-5517. [55] Zhang W, Chiu M H, Chen C H, et al. Role of Metal Contacts in High-Performance Phototransistors Based on WSe2 Monolayers[J]. ACS Nano, 2014, 8(8): 8653-8661. [56] Yin L, Zhan X, Xu K, et al. Ultrahigh Sensitive MoTe2 Phototransistors Driven by Carrier Tunneling[J]. Applied Physics Letters, 2016, 108(4): 043503. [57] Fathipour S, Ma N, Hwang W S, et al. Exfoliated Multilayer MoTe2 Field-Effect Transistors[J]. Applied Physics Letters, 2014, 105(19): 192101. [58] Xu K, Wang Z, Wang F, et al. Ultrasensitive Phototransistors Based on Few‐Layered HfS2[J]. Advanced Materials, 2015, 27(47): 7881-7887. [59] Yang S, Tongay S, Li Y, et al. Layer-Dependent Electrical and Optoelectronic Responses of ReSe2 Nanosheet Transistors[J]. Nanoscale, 2014, 6(13): 7226-7231. [60] Yang S, Tongay S, Yue Q, et al. High-Performance Few-Layer Mo-Doped ReSe2 Nanosheet Photodetectors[J]. Scientific Reports, 2014, 4(1): 1-6. [61] Zhang E, Jin Y, Yuan X, et al. ReS2‐Based Field‐Effect Transistors and Photodetectors[J]. Advanced Functional Materials, 2015, 25(26): 4076-4082. [62] Liu F, Zheng S, He X, et al. Highly Sensitive Detection of Polarized Light Using Anisotropic 2D ReS2[J]. Advanced Functional Materials, 2016, 26(8): 1169-1177. [63] Hafeez M, Gan L, Li H, et al. Large‐Area Bilayer ReS2 Film/Multilayer ReS2 Flakes Synthesized by Chemical Vapor Deposition for High Performance Photodetectors[J]. Advanced Functional Materials, 2016, 26(25): 4551-4560. [64] Liu E, Long M, Zeng J, et al. High Responsivity Phototransistors Based on Few‐Layer ReS2 for Weak Signal Detection[J]. Advanced Functional Materials, 2016, 26(12): 1938-1944. [65] Shim J, Oh A, Kang D H, et al. High‐Performance 2D Rhenium Disulfide (ReS2) Transistors and Photodetectors by Oxygen Plasma Treatment[J]. Advanced Materials, 2016, 28(32): 6985-6992. [66] Hu P, Wang L, Yoon M, et al. Highly Responsive Ultrathin GaS Nanosheet Photodetectors on Rigid and Flexible Substrates[J]. Nano Letters, 2013, 13(4): 1649-1654. [67] Hu P, Wen Z, Wang L, et al. Synthesis of Few-Layer GaSe Nanosheets for High Performance Photodetectors[J]. ACS Nano, 2012, 6(7): 5988-5994. [68] Cao Y, Cai K, Hu P, et al. Strong Enhancement of Photoresponsivity with Shrinking the Electrodes Spacing in Few Layer GaSe Photodetectors[J]. Scientific Reports, 2015, 5(1): 1-7. [69] Hu P, Zhang J, Yoon M, et al. Highly Sensitive Phototransistors Based on Two-Dimensional GaTe Nanosheets with Direct Bandgap[J]. Nano Research, 2014, 7(5): 694-703. [70] Liu F, Shimotani H, Shang H, et al. High-Sensitivity Photodetectors Based on Multilayer GaTe Flakes[J]. ACS Nano, 2014, 8(1): 752-760. [71] Wang Z, Xu K, Li Y, et al. Role of Ga Vacancy on a Multilayer GaTe Phototransistor[J]. ACS Nano, 2014, 8(5): 4859-4865. [72] Jasinski J, Swider W, Washburn J, et al. Crystal Structure of κ-In2Se3[J]. Applied Physics Letters, 2002, 81(23): 4356-4358. [73] Jacobs-Gedrim R B, Shanmugam M, Jain N, et al. Extraordinary Photoresponse in Two-Dimensional In2Se3 Nanosheets[J]. ACS Nano, 2014, 8(1): 514-521. [74] Island J O, Blanter S I, Buscema M, et al. Gate Controlled Photocurrent Generation Mechanisms in High-Gain In2Se3 Phototransistors[J]. Nano Letters, 2015, 15(12): 7853-7858. [75] Zhou J, Zeng Q, Lv D, et al. Controlled Synthesis of High-Quality Monolayered α-In2Se3 via Physical Vapor Deposition[J]. Nano Letters, 2015, 15(10): 6400-6405. [76] Zheng W, Xie T, Zhou Y, et al. Patterning Two-Dimensional Chalcogenide Crystals of Bi2Se3 and In2Se3 and Efficient Photodetectors[J]. Nature Communications, 2015, 6(1): 1-8. [77] Tamalampudi S R, Lu Y Y, U R K, et al. High Performance and Bendable Few-Layered InSe Photodetectors with Broad Spectral Response[J]. Nano Letters, 2014, 14(5): 2800-2806. [78] Feng W, Wu J-B, Li X, et al. Ultrahigh Photoresponsivity and Detectivity in Multilayer InSe Nanosheets Phototransistors with Broadband Response[J]. Journal of Materials Chemistry C, 2015, 3(27): 7022-7028. [79] Mudd G W, Svatek S A, Ren T, et al. Tuning the Bandgap of Exfoliated InSe Nanosheets by Quantum Confinement[J]. Advanced Materials, 2013, 25(40): 5714-5718. [80] Lei S, Wen F, Ge L, et al. An Atomically Layered InSe Avalanche Photodetector[J]. Nano Letters, 2015, 15(5): 3048-3055. [81] Huang Y, Sutter E, Sadowski J T, et al. Tin Disulfide - An Emerging Layered Metal Dichalcogenide Semiconductor: Materials Properties and Device Characteristics[J]. ACS Nano, 2014, 8(10): 10743-10755. [82] Su G, Hadjiev V G, Loya P E, et al. Chemical Vapor Deposition of Thin Crystals of Layered Semiconductor SnS2 for Fast Photodetection Application[J]. Nano Letters, 2015, 15(1): 506-513. [83] Yang D, Li B, Hu C, et al. Controllable Growth Orientation of SnS2 Flakes for Low‐Noise, High‐Photoswitching Ratio, and Ultrafast Phototransistors[J]. Advanced Optical Materials, 2016, 4(3): 419-426. [84] Yu P, Yu X, Lu W, et al. Fast Photoresponse from 1T Tin Diselenide Atomic Layers[J]. Advanced Functional Materials, 2016, 26(1): 137-145. [85] Zhou X, Gan L, Tian W, et al. Ultrathin SnSe2 Flakes Grown by Chemical Vapor Deposition for High‐Performance Photodetectors[J]. Advanced Materials, 2015, 27(48): 8035-8041. [86] Xue D J, Tan J, Hu J S, et al. Anisotropic Photoresponse Properties of Single Micrometer‐Sized GeSe Nanosheet[J]. Advanced Materials, 2012, 24(33): 4528-4533 [87] Ulaganathan R K, Lu Y-Y, Kuo C-J, et al. High Photosensitivity and Broad Spectral Response of Multi-Layered Germanium Sulfide Transistors[J]. Nanoscale, 2016, 8(4): 2284-2292. [88] Lei S, Sobhani A, Wen F, et al. Ternary CuIn7Se11: Towards Ultra‐Thin Layered Photodetectors and Photovoltaic Devices[J]. Advanced Materials, 2014, 26(45): 7666-7672. [89] Ghosh S, Patil P D, Wasala M, et al. Fast Photoresponse and High Detectivity in Copper Indium Selenide (CuIn7Se11) Phototransistors[J]. 2D Materials, 2017, 5(1): 015001. [90] Liu F, Zheng S, Chaturvedi A, et al. Optoelectronic Properties of Atomically Thin ReSSe with Weak Interlayer Coupling[J]. Nanoscale, 2016, 8(11): 5826-5834. [91] Perumal P, Ulaganathan R K, Sankar R, et al. Ultra‐Thin Layered Ternary Single Crystals [Sn(SxSe1−x)2] with Bandgap Engineering for High Performance Phototransistors on Versatile Substrates[J]. Advanced Functional Materials, 2016, 26(21): 3630-3638. [92] Bratschitsch R. Monolayer Diodes Light Up[J]. Nature Nanotechnology, 2014, 9(4): 247-248. [93] Choi M S, Qu D, Lee D, et al. Lateral MoS2 P-N Junction Formed by Chemical Doping for Use in High-Performance Optoelectronics[J]. ACS Nano, 2014, 8(9): 9332-9340. [94] Laskar M R, Nath D N, Ma L, et al. P-Type Doping of MoS2 Thin Films Using Nb[J]. Applied Physics Letters, 2014, 104(9): 092104. [95] Sahoo P K, Memaran S, Xin Y, et al. One-Pot Growth of Two-Dimensional Lateral Heterostructures via Sequential Edge-Epitaxy[J]. Nature, 2018, 553(7686): 63-67. [96] Roy K, Padmanabhan M, Goswami S, et al. Graphene–MoS2 Hybrid Structures for Multifunctional Photoresponsive Memory Devices[J]. Nature Nanotechnology, 2013, 8(11): 826-830. [97] Zhang W, Chuu C-P, Huang J-K, et al. Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures[J]. Scientific Reports, 2014, 4(1): 1-8. [98] Gao A, Liu E, Long M, et al. Gate-Tunable Rectification Inversion and Photovoltaic Detection in Graphene/WSe2 Heterostructures[J]. Applied Physics Letters, 2016, 108(22): 223501. [99] Qiao H, Yuan J, Xu Z, et al. Broadband Photodetectors Based on Graphene–Bi2Te3 Heterostructure[J]. ACS Nano, 2015, 9(2): 1886-1894. [100] Chen Z, Biscaras J, Shukla A. A High Performance Graphene/Few-Layer InSe Photodetector[J]. Nanoscale, 2015, 7(14): 5981-5986. [101] Zhang K, Zhang T, Cheng G, et al. Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe2/MoS2 Van Der Waals Heterostructures[J]. ACS Nano, 2016, 10(3): 3852-3858. [102] Wang G, Li L, Fan W, et al. Interlayer Coupling Induced Infrared Response in WS2/MoS2 Heterostructures Enhanced by Surface Plasmon Resonance[J]. Advanced Functional Materials, 2018, 28(22): 1800339. [103] Lee C-H, Lee G-H, Van Der Zande A M, et al. Atomically Thin P–N Junctions with Van Der Waals Heterointerfaces[J]. Nature Nanotechnology, 2014, 9(9): 676-681. [104] Wei X, Yan F, Lv Q, et al. Fast Gate-Tunable Photodetection in the Graphene Sandwiched WSe2/GaSe Heterojunctions[J]. Nanoscale, 2017, 9(24): 8388-8392. [105] Long M, Liu E, Wang P, et al. Broadband Photovoltaic Detectors Based on an Atomically Thin Heterostructure[J]. Nano Letters, 2016, 16(4): 2254-2259. [106] Pezeshki A, Hossein S, Shokouh H, et al. Electric and Photovoltaic Behavior of a Few-Layer Alpha-MoTe2/MoS2 Dichalcogenide Heterojunction[J]. Advanced Materials, 2016, 28(16): 3216-3222. [107] Huo N J, Yang J H, Huang L, et al. Tunable Polarity Behavior and Self-Driven Photoswitching in P-WSe2/N-WS2 Heterojunctions[J]. Small, 2015, 11(40): 5430-5438. [108] Wang X T, Huang L, Peng Y T, et al. Enhanced Rectification, Transport Property and Photocurrent Generation of Multilayer ReSe2/MoS2 P-N Heterojunctions[J]. Nano Research, 2016, 9(2): 507-516. [109] Yue R Y, Barton A T, Zhu H, et al. HfSe2 Thin Films: 2D Transition Metal Dichalcogenides Grown by Molecular Beam Epitaxy[J]. ACS Nano, 2015, 9(1): 474-480. [110] Gabor N M, Song J C W, Ma Q, et al. Hot Carrier–Assisted Intrinsic Photoresponse in Graphene[J]. Science, 2011, 334(6056): 648-652. [111] Patil V, Capone A, Strauf S, et al. Improved Photoresponse with Enhanced Photoelectric Contribution in Fully Suspended Graphene Photodetectors[J]. Scientific Reports, 2013, 3(1): 1-5. [112] Freitag M, Low T, Xia F, et al. Photoconductivity of Biased Graphene[J]. Nature Photonics, 2013, 7(1): 53 -59. [113] Buscema M, Barkelid M, Zwiller V, et al. Large and Tunable Photothermoelectric Effect in Single-Layer MoS2[J]. Nano Letters, 2013, 13(2): 358-363. [114] Goswami A, Dhandaria P, Pal S, et al. Effect of Interface on Mid-Infrared Photothermal Response of MoS2 Thin Film Grown by Pulsed Laser Deposition[J]. Nano Research, 2017, 10(10): 3571-3584. [115] Wu J Y, Chun Y T, Li S, et al. Broadband MoS2 Field‐Effect Phototransistors: Ultrasensitive Visible‐Light Photoresponse and Negative Infrared Photoresponse[J]. Advanced Materials, 2018, 30(7): 1705880. [116] Costanzo D, Jo S, Berger H, et al. Gate-Induced Superconductivity in Atomically Thin MoS2 Crystals[J]. Nature Nanotechnology, 2016, 11(4): 339-344. [117] Xu C, Wang L, Liu Z, et al. Large-Area High-Quality 2D Ultrathin Mo2C Superconducting Crystals[J]. Nature Materials, 2015, 14(11): 1135-1141. [118] Ge J-F, Liu Z-L, Liu C, et al. Superconductivity Above 100 K in Single-Layer FeSe Films on Doped SrTiO3[J]. Nature Materials, 2015, 14(3): 285-289. [119] Zhang K A, Zhang T N, Cheng G H, et al. Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe2/MoS2 Van Der Waals Heterostructures[J]. ACS Nano, 2016, 10(3): 3852-3858. [120] Wang F, Wang Z X, Xu K, et al. Tunable GaTe-MoS2 Van Der Waals P-N Junctions with Novel Optoelectronic Performance[J]. Nano Letters, 2015, 15(11): 7558-7566. [121] Yang T F, Zheng B Y, Wang Z, et al. Van Der Waals Epitaxial Growth and Optoelectronics of Large-Scale WSe2/SnS2 Vertical Bilayer P-N Junctions[J]. Nature Communications, 2017, 8(1): 1-9. [122] Bao Q L, Loh K P. Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices[J]. ACS Nano, 2012, 6(5): 3677-3694. [123] Duan X D, Wang C, Shaw J C, et al. Lateral Epitaxial Growth of Two-Dimensional Layered Semiconductor Heterojunctions[J]. Nature Nanotechnology, 2014, 9(12): 1024-1030. [124] Huang C M, Wu S F, Sanchez A M, et al. Lateral Heterojunctions within Monolayer MoSe2-WSe2 Semiconductors[J]. Nature Materials, 2014, 13(12): 1096-1101. [125] Dhanabalan S C, Ponraj J S, Zhang H, et al. Present Perspectives of Broadband Photodetectors Based on Nanobelts, Nanoribbons, Nanosheets and the Emerging 2D Materials[J]. Nanoscale, 2016, 8(12): 6410-6434. [126] Liu E F, Long M S, Zeng J W, et al. High Responsivity Phototransistors Based on Few-Layer ReS2 for Weak Signal Detection[J]. Advanced Functional Materials, 2016, 26(12): 1938-1944. [127] Octon T J, Nagareddy V K, Russo S, et al. Fast High-Responsivity Few-Layer MoTe2 Photodetectors[J]. Advanced Optical Materials, 2016, 4(11): 1750-1754. [128] Zhou X, Zhang Q, Gan L, et al. Large-Size Growth of Ultrathin SnS2 Nanosheets and High Performance for Phototransistors[J]. Advanced Functional Materials, 2016, 26(24): 4405-4413. [129] Xie C, Mak C, Tao X M, et al. Photodetectors Based on Two-Dimensional Layered Materials Beyond Graphene[J]. Advanced Functional Materials, 2017, 27(19): 1603886. [130] Zhang Z W, Chen P, Duan X D, et al. Robust Epitaxial Growth of Two-Dimensional Heterostructures, Multiheterostructures, and Superlattices[J]. Science, 2017, 357(6353): 788-792. [131] Massicotte M, Schmidt P, Vialla F, et al. Picosecond Photoresponse in Van Der Waals Heterostructures[J]. Nature Nanotechnology, 2016, 11(1): 42-46. [132] Rivera P, Seyler K L, Yu H Y, et al. Valley-Polarized Exciton Dynamics in a 2D Semiconductor Heterostructure[J]. Science, 2016, 351(6274): 688-691. [133] Barati F, Grossnickle M, Su S S, et al. Hot Carrier-Enhanced Interlayer Electron-Hole Pair Multiplication in 2D Semiconductor Heterostructure Photocells[J]. Nature Nanotechnology, 2017, 12(12): 1134-1139. [134] Kang K, Lee K H, Han Y M, et al. Layer-by-Layer Assembly of Two-Dimensional Materials into Wafer-Scale Heterostructures[J]. Nature, 2017, 550(7675): 229-233. [135] Thygesen K S. Calculating Excitons, Plasmons, and Quasiparticles in 2D Materials and Van Der Waals Heterostructures[J]. 2D Materials, 2017, 4(2): 022004. [136] Wilson N R, Nguyen P V, Seyler K, et al. Determination of Band Offsets, Hybridization, and Exciton Binding in 2D Semiconductor Heterostructures[J]. Science Advances, 2017, 3(2): e1601832. [137] Wang Y, Zhou W X, Huang L, et al. Light Induced Double 'On' State Anti-Ambipolar Behavior and Self-Driven Photoswitching in P-WSe2/N-SnS2 Heterostructures[J]. 2D Materials, 2017, 4(2): 025097. [138] Ye L, Li H, Chen Z F, et al. Near-Infrared Photodetector Based on MoS2/Black Phosphorus Heterojunction[J]. ACS Photonics, 2016, 3(4): 692-699. [139] Deng Y X, Luo Z, Conrad N J, et al. Black Phosphorus-Monolayer MoS2 Van Der Waals Heterojunction P-N Diode[J]. ACS Nano, 2014, 8(8): 8292-8299. [140] Xue Y Z, Zhang Y P, Liu Y, et al. Scalable Production of a Few-Layer MoS2/WS2 Vertical Heterojunction Array and Its Application for Photodetectors[J]. ACS Nano, 2016, 10(1): 573-580. [141] 田志宏, 张秀华, 田志广. X 射线衍射技术在材料分析中的应用[J]. 工程与试验, 2009, (3): 40-42. [142] Gupta A, Sakthivel T, Seal S. Recent Development in 2D Materials Beyond Graphene[J]. Progress in Materials Science, 2015, 7344-126. [143] Shi Y M, Li H N, Li L J. Recent Advances in Controlled Synthesis of Two-Dimensional Transition Metal Dichalcogenides via Vapour Deposition Techniques[J]. Chemical Society Reviews, 2015, 44(9): 2744-2756. [144] Yi M, Shen Z G. A Review on Mechanical Exfoliation for the Scalable Production of Graphene[J]. Journal of Materials Chemistry A, 2015, 3(22): 11700-11715. [145] Novoselov K S, Castro Neto A H. Two-Dimensional Crystals-Based Heterostructures: Materials with Tailored Properties[J]. Physica Scripta, 2012, T146(2012): 014006. [146] Huang Y, Pan Y H, Yang R, et al. Universal Mechanical Exfoliation of Large-Area 2D Crystals[J]. Nature Communications, 2020, 11(1): 1-9. [147] Rugar D, Hansma P. Atomic Force Microscopy[J]. Physics Today, 1990, 43(10): 23-30. [148] 吴国祯. 拉曼谱学: 峰强中的信息 [M]. 科学出版社. 2014: 47-59. [149] Childres I, Jauregui L A, Park W, et al. Raman Spectroscopy of Graphene and Related Materials[J]. New developments in photon and materials research, 2013, 11-20. [150] Zhou L, Xu K, Zubair A, et al. Large-Area Synthesis of High-Quality Uniform Few-Layer MoTe2[J]. Journal of the American Chemical Society, 2015, 137(37): 11892-11895. [151] Chuang H J, Tan X B, Ghimire N J, et al. High Mobility WSe2 P- and N-Type Field-Effect Transistors Contacted by Highly Doped Graphene for Low-Resistance Contacts[J]. Nano Letters, 2014, 14(6): 3594-3601. [152] Liu Y, Wu H, Cheng H C, et al. Toward Barrier Free Contact to Molybdenum Disulfide Using Graphene Electrodes[J]. Nano Letters, 2015, 15(5): 3030-3034. [153] Tan H J, Xu W S, Sheng Y W, et al. Lateral Graphene-Contacted Vertically Stacked WS2/MoS2 Hybrid Photodetectors with Large Gain[J]. Advanced Materials, 2017, 29(46): 1702917. [154] Lu R T, Christianson C, Kirkeminde A, et al. Extraordinary Photocurrent Harvesting at Type-II Heterojunction Interfaces: Toward High Detectivity Carbon Nanotube Infrared Detectors[J]. Nano Letters, 2012, 12(12): 6244-6249. [155] Gong M G, Liu Q F, Cook B, et al. All-Printable ZnO Quantum Dots/Graphene Van Der Waals Heterostructures for Ultrasensitive Detection of Ultraviolet Light[J]. ACS Nano, 2017, 11(4): 4114-4123. [156] Gong Y P, Adhikari P, Liu Q F, et al. Designing the Interface of Carbon Nanotube/Biomaterials for High Performance Ultra-Broadband Photodetection[J]. ACS Applied Materials & Interfaces, 2017, 9(12): 11016-11024. [157] Choi W, Choudhary N, Han G H, et al. Recent Development of Two-Dimensional Transition Metal Dichalcogenides and Their Applications[J]. Materials Today, 2017, 20(3): 116-130. [158] Michel J, Liu J F, Kimerling L C. High-Performance Ge-on-Si Photodetectors[J]. Nature Photonics, 2010, 4(8): 527-534. [159] Chaisakul P, Marris-Morini D, Frigerio J, et al. Integrated Germanium Optical Interconnects on Silicon Substrates[J]. Nature Photonics, 2014, 8(6): 482-488. [160] Lee C H, Lee G H, van der Zande A M, et al. Atomically Thin P-N Junctions with Van Der Waals Heterointerfaces[J]. Nature Nanotechnology, 2014, 9(9): 676-681. [161] Furchi M M, Pospischil A, Libisch F, et al. Photovoltaic Effect in an Electrically Tunable Van Der Waals Heterojunction[J]. Nano Letters, 2014, 14(8): 4785-4791. [162] Yu W Z, Li S J, Zhang Y P, et al. Near-Infrared Photodetectors Based on MoTe2/Graphene Heterostructure with High Responsivity and Flexibility[J]. Small, 2017, 13(24): 1700268. [163] Kuiri M, Chakraborty B, Paul A, et al. Enhancing Photoresponsivity Using MoTe2-Graphene Vertical Heterostructures[J]. Applied Physics Letters, 2016, 108(6): 063506. [164] Zhang K, Fang X, Wang Y L, et al. Ultrasensitive Near-Infrared Photodetectors Based on a Graphene-MoTe2-Graphene Vertical Van Der Waals Heterostructure[J]. ACS Applied Materials & Interfaces, 2017, 9(6): 5392-5398. [165] Su G X, Hadjiev V G, Loya P E, et al. Chemical Vapor Deposition of Thin Crystals of Layered Semiconductor SnS2 for Fast Photodetection Application[J]. Nano Letters, 2015, 15(1): 506-513. [166] Yin L, Zhan X Y, Xu K, et al. Ultrahigh Sensitive MoTe2 Phototransistors Driven by Carrier Tunneling[J]. Applied Physics Letters, 2016, 108(4): 043503. [167] Yang D, Li B, Hu C, et al. Controllable Growth Orientation of SnS2 Flakes for Low-Noise, High-Photoswitching Ratio, and Ultrafast Phototransistors[J]. Advanced Optical Materials, 2016, 4(3): 419-426. [168] Xia J, Zhu D D, Wang L, et al. Large-Scale Growth of Two-Dimensional SnS2 Crystals Driven by Screw Dislocations and Application to Photodetectors[J]. Advanced Functional Materials, 2015, 25(27): 4255-4261. [169] Das T, Jang H, Lee J B, et al. Vertical Field Effect Tunneling Transistor Based on Graphene-Ultrathin Si Nanomembrane Heterostructures[J]. 2D Materials, 2015, 2(4): 044006. [170] Britnell L, Gorbachev R V, Jalil R, et al. Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures[J]. Science, 2012, 335(6071): 947-950. [171] Soci C, Zhang A, Xiang B, et al. ZnO Nanowire UV Photodetectors with High Internal Gain[J]. Nano Letters, 2007, 7(4): 1003-1009. [172] Fonoberov V A, Balandin A A. ZnO Quantum Dots: Physical Properties and Optoelectronic Applications[J]. Journal of Nanoelectronics and Optoelectronics, 2006, 1(1): 19-38. [173] Liu J-M. Photonic devices [M]. Cambridge University Press. 2009: 926-1001. [174] Long M S, Gao A Y, Wang P, et al. Room Temperature High-Detectivity Mid-Infrared Photodetectors Based on Black Arsenic Phosphorus[J]. Science Advances, 2017, 3(6): e1700589. [175] Kirchain R, Kimerling L. A Roadmap for Nanophotonics[J]. Nature Photonics, 2007, 1(6): 303-305. [176] Gong X, Tong M H, Xia Y J, et al. High-Detectivity Polymer Photodetectors with Spectral Response from 300 nm to 1450 nm[J]. Science, 2009, 325(5948): 1665-1667. [177] Wang H, Kim D H. Perovskite-Based Photodetectors: Materials and Devices[J]. Chemical Society Reviews, 2017, 46(17): 5204-5236. [178] Geis M W, Spector S J, Grein M E, et al. Silicon Waveguide Infrared Photodiodes with > 35 GHz Bandwidth and Phototransistors with 50 AW-1 Response[J]. Optics Express, 2009, 17(7): 5193-5204. [179] Grote R R, Padmaraju K, Souhan B, et al. 10 Gb/s Error-Free Operation of All-Silicon Ion-Implanted-Waveguide Photodiodes at 1.55 μm[J]. IEEE Photonics Technology Letters, 2012, 25(1): 67-70. [180] Liu J, Michel J, Giziewicz W, et al. High-Performance, Tensile-Strained Ge P-I-N Photodetectors on a Si Platform[J]. Applied Physics Letters, 2005, 87(10): 103501. [181] Virot L, Crozat P, Fédéli J-M, et al. Germanium Avalanche Receiver for Low Power Interconnects[J]. Nature Communications, 2014, 5(1): 1-6. [182] Sheng Z, Liu L, Brouckaert J, et al. InGaAs PIN Photodetectors Integrated on Silicon-on-Insulator Waveguides[J]. Optics Express, 2010, 18(2): 1756-1761. [183] Jagadish C, Gunapala S, Rhiger D. Advances in Infrared Photodetectors [M]. Elsevier. 2011: 60-146. [184] Downs C, Vandervelde T E. Progress in Infrared Photodetectors Since 2000[J]. Sensors, 2013, 13(4): 5054-5098. [185] 吴国安, 罗林保. 近红外光电探测器的发展与应用[J]. 物理, 2018, 47(3): 137-142. [186] 黄志伟, 汪建元, 黄巍, et al. 锗近红外光电探测器制备工艺研究进展[J]. 红外与激光工程, 2020, 49(1): 0103004-0103004 (0103008). [187] Xia F N, Wang H, Xiao D, et al. Two-Dimensional Material Nanophotonics[J]. Nature Photonics, 2014, 8(12): 899-907. [188] Yang S X, Wang C, Ataca C, et al. Self-Driven Photodetector and Ambipolar Transistor in Atomically Thin GaTe-MoS2 P-N vdW Heterostructure[J]. ACS Applied Materials & Interfaces, 2016, 8(4): 2533-2539. [189] Luong D H, Lee H S, Neupane G P, et al. Tunneling Photocurrent Assisted by Interlayer Excitons in Staggered Van Der Waals Hetero‐Bilayers[J]. Advanced Materials, 2017, 29(33): 1701512. [190] Rivera P, Schaibley J R, Jones A M, et al. Observation of Long-Lived Interlayer Excitons in Monolayer MoSe2–WSe2 Heterostructures[J]. Nature Communications, 2015, 6(1): 1-6. [191] Deilmann T, Thygesen K S. Interlayer Excitons with Large Optical Amplitudes in Layered Van Der Waals Materials[J]. Nano Letters, 2018, 18(5): 2984-2989. [192] Deilmann T, Thygesen K S. Interlayer Trions in the MoS2/WS2 Van Der Waals Heterostructure[J]. Nano Letters, 2018, 18(2): 1460-1465. [193] Hanbicki A T, Chuang H-J, Rosenberger M R, et al. Double Indirect Interlayer Exciton in a MoSe2/WSe2 Van Der Waals Heterostructure[J]. ACS Nano, 2018, 12(5): 4719-4726. [194] Okada M, Kutana A, Kureishi Y, et al. Direct and Indirect Interlayer Excitons in a Van Der Waals Heterostructure of h-BN/WS2/MoS2/h-BN[J]. ACS Nano, 2018, 12(3): 2498-2505. [195] Qi T, Gong Y, Li A, et al. Interlayer Transition in a vdW Heterostructure Toward Ultrahigh Detectivity Shortwave Infrared Photodetectors[J]. Advanced Functional Materials, 2020, 30(3): 1905687. [196] Karni O, Barré E, Lau S C, et al. Infrared Interlayer Exciton Emission in MoS2/WSe2 Heterostructures[J]. Physical Review Letters, 2019, 123(24): 247402. [197] Huo N J, Konstantatos G. Recent Progress and Future Prospects of 2D-Based Photodetectors[J]. Advanced Materials, 2018, 30(51): 1801164. [198] Wu F, Lovorn T, MacDonald A H. Topological Exciton Bands in Moiré Heterojunctions[J]. Physical Review Letters, 2017, 118(14): 147401. [199] Yu H, Liu G-B, Tang J, et al. Moiré Excitons: From Programmable Quantum Emitter Arrays to Spin-Orbit–Coupled Artificial Lattices[J]. Science Advances, 2017, 3(11): e1701696. [200] Zhang C, Chuu C-P, Ren X, et al. Interlayer Couplings, Moiré Patterns, and 2D Electronic Superlattices in MoS2/WSe2 Hetero-Bilayers[J]. Science Advances, 2017, 3(1): e1601459. [201] Jin C, Ma E Y, Karni O, et al. Ultrafast Dynamics in Van Der Waals Heterostructures[J]. Nature Nanotechnology, 2018, 13(11): 994-1003. [202] Pan Y, Fölsch S, Nie Y, et al. Quantum-Confined Electronic States Arising from the Moiré Pattern of MoS2–WSe2 Heterobilayers[J]. Nano Letters, 2018, 18(3): 1849-1855. [203] Rivera P, Yu H, Seyler K L, et al. Interlayer Valley Excitons in Heterobilayers of Transition Metal Dichalcogenides[J]. Nature Nanotechnology, 2018, 13(11): 1004-1015. [204] Alexeev E M, Ruiz-Tijerina D A, Danovich M, et al. Resonantly Hybridized Excitons in Moiré Superlattices in Van Der Waals Heterostructures[J]. Nature, 2019, 567(7746): 81-86. [205] Jin C, Regan E C, Yan A, et al. Observation of Moiré Excitons in WSe2/WS2 Heterostructure Superlattices[J]. Nature, 2019, 567(7746): 76-80. [206] Seyler K L, Rivera P, Yu H, et al. Signatures of Moiré-Trapped Valley Excitons in MoSe2/WSe2 Heterobilayers[J]. Nature, 2019, 567(7746): 66-70. [207] Tran K, Moody G, Wu F, et al. Evidence for Moiré Excitons in Van Der Waals Heterostructures[J]. Nature, 2019, 567(7746): 71-75. [208] Gillen R, Maultzsch J. Interlayer Excitons in MoSe2/WSe2 Heterostructures from First Principles[J]. Physical Review B, 2018, 97(16): 165306. [209] Zhang C, Gong C, Nie Y, et al. Systematic Study of Electronic Structure and Band Alignment of Monolayer Transition Metal Dichalcogenides in Van Der Waals Heterostructures[J]. 2D Materials, 2016, 4(1): 015026. [210] Lee C-H, Lee G-H, Van Der Zande A M, et al. Atomically Thin P-N Junctions with Van Der Waals Heterointerfaces[J]. Nature Nanotechnology, 2014, 9(9): 676-681. [211] Cheng R, Li D, Zhou H, et al. Electroluminescence and Photocurrent Generation from Atomically Sharp WSe2/MoS2 Heterojunction P-N Diodes[J]. Nano Letters, 2014, 14(10): 5590-5597. [212] Huo N, Yang J, Huang L, et al. Tunable Polarity Behavior and Self‐Driven Photoswitching in P‐WSe2/N‐WS2 Heterojunctions[J]. Small, 2015, 11(40): 5430-5438. [213] Yin Z, Li H, Li H, et al. Single-Layer MoS2 Phototransistors[J]. ACS Nano, 2012, 6(1): 74-80. [214] Lee H S, Min S-W, Chang Y-G, et al. MoS2 Nanosheet Phototransistors with Thickness-Modulated Optical Energy Gap[J]. Nano Letters, 2012, 12(7): 3695-3700. [215] Perea-López N, Lin Z, Pradhan N R, et al. CVD-Grown Monolayered MoS2 as an Effective Photosensor Operating at Low-Voltage[J]. 2D Materials, 2014, 1(1): 011004. [216] Tsai D-S, Liu K-K, Lien D-H, et al. Few-Layer MoS2 with High Broadband Photogain and Fast Optical Switching for Use in Harsh Environments[J]. ACS Nano, 2013, 7(5): 3905-3911. [217] Chen J, Liu B, Liu Y, et al. Chemical Vapor Deposition of Large‐Sized Hexagonal WSe2 Crystals on Dielectric Substrates[J]. Advanced Materials, 2015, 27(42): 6722-6727. [218] Pradhan N R, Ludwig J, Lu Z, et al. High Photoresponsivity and Short Photoresponse Times in Few-Layered WSe2 Transistors[J]. ACS Applied Materials & Interfaces, 2015, 7(22): 12080-12088. [219] Koh A, Gutbrod S R, Meyers J D, et al. Ultrathin Injectable Sensors of Temperature, Thermal Conductivity, and Heat Capacity for Cardiac Ablation Monitoring[J]. Advanced Healthcare Materials, 2016, 5(3): 373-381. [220] Richards P L, McCreight C R. Infrared Detectors for Astrophysics[J]. Physics Today, 2005, 58(2): 41-47. [221] Rogalski A. Infrared Detectors for the Future[J]. Acta Physica Polonica A, 2009, 116(3): 389-406. [222] Zuo H J, Choi D Y, Gai X, et al. High-Efficiency All-Dielectric Metalenses for Mid-Infrared Imaging[J]. Advanced Optical Materials, 2017, 5(23): 1700585. [223] Kulkarni E S, Heussler S P, Stier A V, et al. Exploiting the IR Transparency of Graphene for Fast Pyroelectric Infrared Detection[J]. Advanced Optical Materials, 2015, 3(1): 34-38. [224] Kopytko M, Rogalski A. HgCdTe Barrier Infrared Detectors[J]. Progress in Quantum Electronics, 2016, 471-18. [225] Mynbaev K D, Smirnov A M, Bazhenov N L, et al. Optical Studies of Molecular-Beam Epitaxy-Grown Hg1-xCdxTe with x = 0.7-0.8[J]. Journal of Electronic Materials, 2020, 49(8): 4642-4646. [226] Martyniuk P, Gawron W, Rogalski A. Theoretical Modeling of HOT HgCdTe Barrier Detectors for the Mid-Wave Infrared Range[J]. Journal of Electronic Materials, 2013, 42(11): 3309-3319. [227] Rogalski A, Martyniuk P, Kopytko M. Type-II Superlattice Photodetectors versus HgCdTe Photodiodes[J]. Progress in Quantum Electronics, 2019, 68100228. [228] Ciura L, Kolek A, Wrobel J, et al. 1/f Noise in Mid-Wavelength Infrared Detectors With InAs/GaSb Superlattice Absorber[J]. IEEE Transactions on Electron Devices, 2015, 62(6): 2022-2026. [229] Hao X J, Deng Z, Huang J, et al. Demonstration of a Dual-Band InAs/GaSb Type-II Superlattice Infrared Detector Based on a Single Heterojunction Diode[J]. IEEE Journal of Quantum Electronics, 2020, 56(2): 4300106. [230] Rogalski A, Kopytko M, Martyniuk P. InAs/GaSb Type-II Superlattice Infrared Detectors: Three Decades of Development[J]. Infrared Technology and Applications XLIII, 2017, 101771017715. [231] Ariyawansa G, Duran J, Reyner C, et al. InAs/InAsSb Strained-Layer Superlattice Mid-Wavelength Infrared Detector for High-Temperature Operation[J]. Micromachines, 2019, 10(12): 806. [232] Gomolka E, Markowska O, Kopytko M, et al. Mid-Wave InAs/GaSb Superlattice Barrier Infrared Detectors with nBnN and pBnN Design[J]. Bulletin of the Polish Academy of Sciences-Technical Sciences, 2018, 66(3): 317-323. [233] Settipalli M, Neogi S. Theoretical Prediction of Enhanced Thermopower in n-Doped Si/Ge Superlattices Using Effective Mass Approximation[J]. Journal of Electronic Materials, 2020, 49(7): 4431-4442. [234] Krivobok V S, Litvinov D A, Nikolaev S N, et al. Excitonic Effects and Impurity-Defect Emission in GaAs/AlGaAs Structures Used for the Production of Mid-IR Photodetectors[J]. Semiconductors, 2019, 53(12): 1608-1616. [235] Mensz P M, Dror B, Ajay A, et al. Design and Implementation of Bound-to-Quasibound GaN/AlGaN Photovoltaic Quantum Well Infrared Photodetectors Operating in the Short Wavelength Infrared Range at Room Temperature[J]. Journal of Applied Physics, 2019, 125(17): 174505. [236] Shen A D, Ravikumar A P, Chen G P, et al. MBE Growth of ZnCdSe/ZnCdMgSe Quantum-Well Infrared Photodetectors[J]. Journal of Vacuum Science & Technology B, 2013, 31(3): 03C113. [237] Wei X F, Wang W Y, Fang J, et al. Mid-Infrared Optical Absorption in InAs/AlSb/GaSb Based Quantum Well System[J]. Physica E: Low-Dimensional Systems & Nanostructures, 2020, 117113801. [238] Kaya Y, Ravikumar A, Chen G P, et al. Two-Band ZnCdSe/ZnCdMgSe Quantum Well Infrared Photodetector[J]. AIP Advances, 2018, 8(7): 075105. [239] Yang Z, Guo L J, Zu B Y, et al. CdS/ZnO Core/Shell Nanowire-Built Films for Enhanced Photodetecting and Optoelectronic Gas-Sensing Applications[J]. Advanced Optical Materials, 2014, 2(8): 738-745. [240] Teke A, Dogan S, Yun F, et al. GaN/AlGaN Back-Illuminated Multiple-Quantum-Well Schottky Barrier Ultraviolet Photodetectors[J]. Solid-State Electronics, 2003, 47(8): 1401-1408. [241] Brec R, Schleich D M, Ouvrard G, et al. Physical Properties of Lithium Intercalation Compounds of the Layered Transition-Metal Chalcogenophosphites[J]. Inorganic Chemistry, 1979, 18(7): 1814-1818. [242] Kohl F, Keplinger F, Jachimowicz A, et al. A Model of Metal Film Resistance Bolometers Based on the Electro-Thermal Feedback Effect[J]. Sensors and Actuators A: Physical, 2004, 115(2-3): 308-317. [243] Langton W G. A Fast Sensitive Metal Bolometer[J]. Journal of the Optical Society of America, 1946, 36(6): 355-355. [244] Awad E S, Al-Khalli N, Abdel-Rahman M, et al. Comparison of V2O5 Microbolometer Optical Performance Using NiCr and Ti Thin-Films[J]. IEEE Photonics Technology Letters, 2015, 27(5): 462-465. [245] Garcia M, Ambrosio R, Torres A, et al. IR Bolometers Based on Amorphous Silicon Germanium Alloys[J]. Journal of Non-Crystalline Solids, 2004, 338744-748. [246] Orduna-Diaz A, Rojas-Lopez M, Delgado-Macuil R, et al. Responsivity Determination of a Hydrogenated Amorphous Silicon Micro-Bolometer Array[J]. 22nd Congress of the International Commission for Optics: Light for the Development of the World, 2011, 801180111v. [247] Son L N, Tachiki T, Uchida T. Characteristics of Vanadium Oxide Thin Films Prepared by Metal-Organic Decomposition for Bolometer Detectors[J]. Japanese Journal of Applied Physics, 2011, 50(2): 025803. [248] Su Y Y, Cheng X W, Li J B, et al. Evolution of Microstructure in Vanadium Oxide Bolometer Film during Annealing Process[J]. Applied Surface Science, 2015, 357887-891. [249] Li H, Chu K, Pu X, et al. A-Site K-Doping to Enhance Room-Temperature TCR of Polycrystalline La0.8Sr0.2-xKxMnO3 Ceramics[J]. Journal of Alloys and Compounds, 2020, 847156417. [250] Li H, Dong G, Chu K, et al. Utilization of Metallic Ag and Ag+ Ions to Optimize Room-Temperature TCR and MR of La0.7(Ca0.205Sr0.095) MnO3: x Ag2O Composites[J]. Journal of Materials Chemistry C, 2020, 8(47): 17054-17064. [251] Rogalski A. Infrared Detectors [M]. CRC Press. 2010: 87-130. [252] Kruse P W. Uncooled Thermal Imaging: Arrays, Systems, and Applications [M]. SPIE Press. 2001: 11-23. [253] Gusmeao R, Sofer Z, Pumera M. Exfoliated Layered Manganese Trichalcogenide Phosphite (MnPX3, X = S, Se) as Electrocatalytic Van Der Waals Materials for Hydrogen Evolution[J]. Advanced Functional Materials, 2019, 29(2): 1805975. [254] Shifa T A, Wang F M, Cheng Z Z, et al. High Crystal Quality 2D Manganese Phosphorus Trichalcogenide Nanosheets and Their Photocatalytic Activity[J]. Advanced Functional Materials, 2018, 28(18): 1800548. [255] Gao T, Zhang Q, Li L, et al. 2D Ternary Chalcogenides[J]. Advanced Optical Materials, 2018, 6(14): 1800058. [256] Mayorga-Martinez C C, Sofer Z, Sedmidubsky D, et al. Layered Metal Thiophosphite Materials: Magnetic, Electrochemical, and Electronic Properties[J]. ACS Applied Materials & Interfaces, 2017, 9(14): 12563-12573. [257] Banda E. Optical Absorption of FePSe3 in the Near Infrared, Visible, and Near Ultraviolet Regions[J]. Physica Status Solidi (B), 1986, 138(2): K125-K129. [258] Du K Z, Wang X Z, Liu Y, et al. Weak Van der Waals Stacking, Wide-Range Band Gap, and Raman Study on Ultrathin Layers of Metal Phosphorus Trichalcogenides[J]. ACS Nano, 2016, 10(2): 1738-1743. [259] Scagliotti M, Jouanne M, Balkanski M, et al. Raman-Scattering in Antiferromagnetic FePS3 and FePSe3 Crystals[J]. Physical Review B, 1987, 35(13): 7097-7104. [260] Kresse G, Hafner J. Ab-Initio Molecular-Dynamics Simulation of the Liquid-Metal Amorphous-Semiconductor Transition in Germanium[J]. Physical Review B, 1994, 49(20): 14251-14269. [261] Blochl P E. Projector Augmented-Wave Method[J]. Physical Review B, 1994, 50(24): 17953-17979. [262] Kresse G, Furthmuller J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set[J]. Physical Review B, 1996, 54(16): 11169-11186. [263] Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. [264] Dion M, Rydberg H, Schroder E, et al. Van Der Waals Density Functional for General Geometries[J]. Physical Review Letters, 2004, 92(24): 246401. [265] Heyd J, Scuseria G E, Ernzerhof M. Hybrid Functionals Based on a Screened Coulomb Potential[J]. Journal of Chemical Physics, 2003, 118(18): 8207-8215. [266] Mostofi A A, Yates J R, Pizzi G, et al. An Updated Version of Wannier90: A Tool for Obtaining Maximally-Localised Wannier Functions[J]. Computer Physics Communications, 2014, 185(8): 2309-2310. [267] Chen C H, Yi X J, Zhao X R, et al. Characterizations of VO2-Based Uncooled Microbolometer Linear Array[J]. Sensors and Actuators A: Physical, 2001, 90(3): 212-214. |
所在学位评定分委会 | 物理系
|
国内图书分类号 | TG15
|
来源库 | 人工提交
|
成果类型 | 学位论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/333773 |
专题 | 理学院_物理系 |
推荐引用方式 GB/T 7714 |
李阿蕾. 基于二维材料限域或界面效应的非制冷红外光探测研究[D]. 哈尔滨. 哈尔滨工业大学,2021.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
11749332-李阿蕾-物理系.pdf(9558KB) | -- | -- | 限制开放 | -- | 请求全文 |
个性服务 |
原文链接 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
导出为Excel格式 |
导出为Csv格式 |
Altmetrics Score |
谷歌学术 |
谷歌学术中相似的文章 |
[李阿蕾]的文章 |
百度学术 |
百度学术中相似的文章 |
[李阿蕾]的文章 |
必应学术 |
必应学术中相似的文章 |
[李阿蕾]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论