中文版 | English
题名

CT2US: Cross-modal transfer learning for kidney segmentation in ultrasound images with synthesized data

作者
通讯作者Zhao, Baoliang; Hu, Ying
发表日期
2022-05-01
DOI
发表期刊
ISSN
0041-624X
EISSN
1874-9968
卷号122
摘要
Accurate segmentation of kidney in ultrasound images is a vital procedure in clinical diagnosis and interventional operation. In recent years, deep learning technology has demonstrated promising prospects in medical image analysis. However, due to the inherent problems of ultrasound images, data with annotations are scarce and arduous to acquire, hampering the application of data-hungry deep learning methods. In this paper, we propose cross-modal transfer learning from computerized tomography (CT) to ultrasound (US) by leveraging annotated data in the CT modality. In particular, we adopt cycle generative adversarial network (CycleGAN) to synthesize US images from CT data and construct a transition dataset to mitigate the immense domain discrepancy between US and CT. Mainstream convolutional neural networks such as U-Net, U-Res, PSPNet, and DeepLab v3+ are pretrained on the transition dataset and then transferred to real US images. We first trained CNN models on a data set composed of 50 ultrasound images and validated them on a validation set composed of 30 ultrasound images. In addition, we selected 82 ultrasound images from another hospital to construct a cross site data set to verify the generalization performance of the models. The experimental results show that with our proposed transfer learning strategy, the segmentation accuracy in dice similarity coefficient (DSC) reaches 0.853 for U-Net, 0.850 for U-Res, 0.826 for PSPNet and 0.827 for DeepLab v3+ on the cross-site test set. Compared with training from scratch, the accuracy improvement was 0.127, 0.097, 0.105 and 0.036 respectively. Our transfer learning strategy effectively improves the accuracy and generalization ability of ultrasound image segmentation model with limited training data.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China[12026604,"U1813204",62003330] ; Key Fundamental Research Program of Shenzhen["JCYJ20200109115201707","JCYJ20200109112818703","JCYJ20200109114233670"]
WOS研究方向
Acoustics ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Acoustics ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:000790826400006
出版者
ESI学科分类
CLINICAL MEDICINE
来源库
Web of Science
引用统计
被引频次[WOS]:16
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/334329
专题南方科技大学第一附属医院
作者单位
1.Chinese Acad Sci, Shenzhen Inst Adv Technol, Beijing 518055, Peoples R China
2.Southern Univ Sci & Technol, Clin Coll Jinan Univ 2, Shenzhen Peoples Hosp, Dept Ultrasound,Affiliated Hosp 1, Shenzhen 518020, Peoples R China
3.Pazhou Lab, Guangzhou 510320, Peoples R China
4.Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
5.Univ Chinese Acad Sci, Beijing 100039, Peoples R China
第一作者单位南方科技大学第一附属医院
推荐引用方式
GB/T 7714
Song, Yuxin,Zheng, Jing,Lei, Long,et al. CT2US: Cross-modal transfer learning for kidney segmentation in ultrasound images with synthesized data[J]. ULTRASONICS,2022,122.
APA
Song, Yuxin,Zheng, Jing,Lei, Long,Ni, Zhipeng,Zhao, Baoliang,&Hu, Ying.(2022).CT2US: Cross-modal transfer learning for kidney segmentation in ultrasound images with synthesized data.ULTRASONICS,122.
MLA
Song, Yuxin,et al."CT2US: Cross-modal transfer learning for kidney segmentation in ultrasound images with synthesized data".ULTRASONICS 122(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Song, Yuxin]的文章
[Zheng, Jing]的文章
[Lei, Long]的文章
百度学术
百度学术中相似的文章
[Song, Yuxin]的文章
[Zheng, Jing]的文章
[Lei, Long]的文章
必应学术
必应学术中相似的文章
[Song, Yuxin]的文章
[Zheng, Jing]的文章
[Lei, Long]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。