中文版 | English
题名

Adaptive multiobjective evolutionary algorithm for large-scale transformer ratio error estimation

作者
通讯作者He, Cheng
发表日期
2022-05-01
DOI
发表期刊
ISSN
1865-9284
EISSN
1865-9292
卷号14页码:237-251
摘要
As a typical large-scale multiobjective optimization problem extracted from real-world applications, the voltage transformer ratio error estimation (TREE) problem is challenging for existing evolutionary algorithms (EAs). Due to the large number of decision variables in the problems, existing algorithms cannot solve TREE problems efficiently. Besides, most EAs may fail to balance the convergence enhancement and diversity maintenance, leading to the trap in local optima even at the early stage of the evolution. This work proposes an adaptive large-scale multiobjective EA (LSMOEA) to handle the TREE problems with thousands of decision variables. Generally, multiple efficient offspring generation and environmental selection strategies selected from some representative LSMOEAs are included. Then an adaptive selection strategy is used to determine which offspring generation and environmental selection operators are used in each generation of the evolution. Thus, the search behavior of the proposed algorithm evolves along with the evolution process, the balance between convergence and diversity is maintained, and the proposed algorithm is expected to solve TREE problems effectively and efficiently. Experimental results show that the proposed algorithm achieves significant performance improvement due to the adaptive selection of different operators, providing an effective and efficient approach for large-scale optimization problems.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China["U20A20306",61903178,61906081] ; Guangdong Basic and Applied Basic Research Foundation[2019A1515110575] ; Guangdong Provincial Key Laboratory[2020B121201001] ; Program for Guangdong Introducing Innovative and Enterpreneurial Teams[2017ZT07X386] ; Shenzhen Science and Technology Program["KQTD2016112514355531","RCBS20200714114817264"]
WOS研究方向
Computer Science ; Operations Research & Management Science
WOS类目
Computer Science, Artificial Intelligence ; Operations Research & Management Science
WOS记录号
WOS:000790694500001
出版者
EI入藏号
20221912094186
EI主题词
Decision making ; Errors ; Evolutionary algorithms ; Forestry ; Power transformers ; Trees (mathematics)
EI分类号
Electric Power Lines and Equipment:706.2 ; Woodlands and Forestry:821.0 ; Management:912.2 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 ; Optimization Techniques:921.5
来源库
Web of Science
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/334346
专题工学院_计算机科学与工程系
作者单位
1.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Guangdong Prov Key Lab Brain Inspired Intelligent, Shenzhen 518055, Peoples R China
2.Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Key Lab Image Informat Proc & Intelligent Control, Wuhan 430074, Peoples R China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Huang, Changwu,Li, Lianghao,He, Cheng,et al. Adaptive multiobjective evolutionary algorithm for large-scale transformer ratio error estimation[J]. Memetic Computing,2022,14:237-251.
APA
Huang, Changwu,Li, Lianghao,He, Cheng,Cheng, Ran,&Yao, Xin.(2022).Adaptive multiobjective evolutionary algorithm for large-scale transformer ratio error estimation.Memetic Computing,14,237-251.
MLA
Huang, Changwu,et al."Adaptive multiobjective evolutionary algorithm for large-scale transformer ratio error estimation".Memetic Computing 14(2022):237-251.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Adaptive multiobject(1172KB)期刊论文作者接受稿限制开放CC BY-NC-SA
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Huang, Changwu]的文章
[Li, Lianghao]的文章
[He, Cheng]的文章
百度学术
百度学术中相似的文章
[Huang, Changwu]的文章
[Li, Lianghao]的文章
[He, Cheng]的文章
必应学术
必应学术中相似的文章
[Huang, Changwu]的文章
[Li, Lianghao]的文章
[He, Cheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。