中文版 | English
题名

High-resolution mapping of wildfire drivers in California based on machine learning

作者
通讯作者Chen,Ji; Zheng,Chunmiao
发表日期
2022-08-10
DOI
发表期刊
ISSN
0048-9697
EISSN
1879-1026
卷号833
摘要
Wildfires are important natural disturbances of ecosystems; however, they threaten the sustainability of ecosystems, climate and humans worldwide. It is vital to quantify and map the controlling drivers of wildfires for effective wildfire prediction and risk management. However, high-resolution mapping of wildfire drivers remains challenging. Here we established machine-learning (Random Forests) models using 23 climate and land surface variables as model inputs to reconstruct the spatial variability and seasonality of wildfire occurrence and extent in California. The importance of individual drivers was then quantified based on the Shapley value method. Thus, we provided spatially resolved maps of wildfire drivers at high resolutions up to 0.004° × 0.004°. The results indicated that precipitation and soil moisture are the major drivers dominating 37% of the total burnt area for large and extreme wildfires in summer and 63% in autumn, while elevation plays a major role for 15–58% of burnt areas in small wildfires in all seasons. Winds are also an important contributor to summer wildfires, accounting for 41% of large and extreme burnt areas. This study enhanced our knowledge of spatial variability of wildfire drivers across diverse landscapes in a fine-scale mapping, providing valuable perspectives and case studies for other regions of the world with frequently occurred wildfire.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China[41861124003];
WOS研究方向
Environmental Sciences & Ecology
WOS类目
Environmental Sciences
WOS记录号
WOS:000808120000001
出版者
EI入藏号
20221611986672
EI主题词
Climate models ; Decision trees ; Ecosystems ; Fires ; Game theory ; Machine learning ; Mapping ; Risk management
EI分类号
Surveying:405.3 ; Meteorology:443 ; Ecology and Ecosystems:454.3 ; Soils and Soil Mechanics:483.1 ; Fires and Fire Protection:914.2 ; Mathematics:921 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 ; Probability Theory:922.1 ; Systems Science:961
ESI学科分类
ENVIRONMENT/ECOLOGY
Scopus记录号
2-s2.0-85128303453
来源库
Scopus
引用统计
被引频次[WOS]:11
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/334384
专题工学院_环境科学与工程学院
工学院_深圳可持续发展研究院
作者单位
1.School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen,China
2.Department of Civil Engineering,The University of Hong Kong,Hong Kong
3.Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences,Shenzhen,China
4.Shenzhen Institute of Sustainable Development,Southern University of Science and Technology,Shenzhen,China
第一作者单位环境科学与工程学院
通讯作者单位环境科学与工程学院;  深圳可持续发展研究院
第一作者的第一单位环境科学与工程学院
推荐引用方式
GB/T 7714
Qiu,Linghua,Chen,Ji,Fan,Linfeng,et al. High-resolution mapping of wildfire drivers in California based on machine learning[J]. SCIENCE OF THE TOTAL ENVIRONMENT,2022,833.
APA
Qiu,Linghua,Chen,Ji,Fan,Linfeng,Sun,Liqun,&Zheng,Chunmiao.(2022).High-resolution mapping of wildfire drivers in California based on machine learning.SCIENCE OF THE TOTAL ENVIRONMENT,833.
MLA
Qiu,Linghua,et al."High-resolution mapping of wildfire drivers in California based on machine learning".SCIENCE OF THE TOTAL ENVIRONMENT 833(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Qiu,Linghua]的文章
[Chen,Ji]的文章
[Fan,Linfeng]的文章
百度学术
百度学术中相似的文章
[Qiu,Linghua]的文章
[Chen,Ji]的文章
[Fan,Linfeng]的文章
必应学术
必应学术中相似的文章
[Qiu,Linghua]的文章
[Chen,Ji]的文章
[Fan,Linfeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。