题名 | FedNILM: Applying Federated Learning to NILM Applications at the Edge |
作者 | |
发表日期 | 2022
|
DOI | |
发表期刊 | |
ISSN | 2473-2400
|
卷号 | PP期号:99页码:1-1 |
摘要 | Non-intrusive load monitoring (NILM) helps disaggregate a household's main electricity consumption to energy usages of individual appliances, greatly cutting down the cost of fine-grained load monitoring towards the green home vision. To address the privacy concern in NILM applications, federated learning (FL) could be leveraged for NILM model training and sharing. When applying the FL paradigm in real-world NILM applications, however, we are faced with the challenges of edge resource restriction, edge model personalization, and edge training data scarcity. We present FedNILM, a practical FL paradigm for NILM applications at the edge client. Specifically, FedNILM delivers privacy-preserving and personalized NILM services to large-scale edge clients, by leveraging i) collaborative data aggregation through federated learning, ii) efficient cloud model compression via filter pruning and multi-task learning, and iii) personalized edge model building with unsupervised transfer learning. Our experiments on real-world energy data show that FedNILM can achieve personalized energy disaggregation with the state-of-the-art accuracy, while preserving the user privacy. |
关键词 | |
相关链接 | [IEEE记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | National Key Research and Development Program of China[2020YFB1806400]
; National Natural Science Foundation of China[62002150]
; Peng Cheng Laboratory The Major Key Project of PCL[PCL2021A08]
; Guangdong Basic and Applied Basic Research Foundation[2019B1515120031]
|
WOS研究方向 | Telecommunications
|
WOS类目 | Telecommunications
|
WOS记录号 | WOS:001009931100023
|
出版者 | |
EI入藏号 | 20221611994228
|
EI主题词 | Electric load management
; Learning systems
|
EI分类号 | Electric Power Systems:706.1
; Telecommunication; Radar, Radio and Television:716
; Telephone Systems and Related Technologies; Line Communications:718
; Data Processing and Image Processing:723.2
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9757234 |
引用统计 |
被引频次[WOS]:22
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/334467 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | 1.Chinese University of Hong Kong, Hong Kong, China 2.Peng Cheng Laboratory, Shenzhen, Guangdong, China 3.Southern University of Science and Technology, Shenzhen Guangdong, China, and Peng Cheng Laboratory, Shenzhen, Guangdong, China 4.Southern University of Science and Technology, Shenzhen Guangdong, China, Peng Cheng Laboratory, Shenzhen, Guangdong, China, and Heyuan Bay Area Digital Economy Technology Innovation Center, Heyuan, Guangdong, China 5.Department of Computer Science, University of Victoria, Victoria, BC, Canada 6.Global Information and Telecommunication Institute, Waseda University, Shinjuku, Tokyo, Japan 7.School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology, Kitami, Japan |
推荐引用方式 GB/T 7714 |
Zhang,Yu,Tang,Guoming,Huang,Qianyi,et al. FedNILM: Applying Federated Learning to NILM Applications at the Edge[J]. IEEE Transactions on Green Communications and Networking,2022,PP(99):1-1.
|
APA |
Zhang,Yu.,Tang,Guoming.,Huang,Qianyi.,Wang,Yi.,Wu,Kui.,...&Shao,Xun.(2022).FedNILM: Applying Federated Learning to NILM Applications at the Edge.IEEE Transactions on Green Communications and Networking,PP(99),1-1.
|
MLA |
Zhang,Yu,et al."FedNILM: Applying Federated Learning to NILM Applications at the Edge".IEEE Transactions on Green Communications and Networking PP.99(2022):1-1.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
10.1109@TGCN.2022.31(712KB) | -- | -- | 开放获取 | -- | 浏览 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论