中文版 | English
题名

FedNILM: Applying Federated Learning to NILM Applications at the Edge

作者
发表日期
2022
DOI
发表期刊
ISSN
2473-2400
卷号PP期号:99页码:1-1
摘要
Non-intrusive load monitoring (NILM) helps disaggregate a household's main electricity consumption to energy usages of individual appliances, greatly cutting down the cost of fine-grained load monitoring towards the green home vision. To address the privacy concern in NILM applications, federated learning (FL) could be leveraged for NILM model training and sharing. When applying the FL paradigm in real-world NILM applications, however, we are faced with the challenges of edge resource restriction, edge model personalization, and edge training data scarcity. We present FedNILM, a practical FL paradigm for NILM applications at the edge client. Specifically, FedNILM delivers privacy-preserving and personalized NILM services to large-scale edge clients, by leveraging i) collaborative data aggregation through federated learning, ii) efficient cloud model compression via filter pruning and multi-task learning, and iii) personalized edge model building with unsupervised transfer learning. Our experiments on real-world energy data show that FedNILM can achieve personalized energy disaggregation with the state-of-the-art accuracy, while preserving the user privacy.
关键词
相关链接[IEEE记录]
收录类别
EI ; SCI
语种
英语
学校署名
其他
资助项目
National Key Research and Development Program of China[2020YFB1806400] ; National Natural Science Foundation of China[62002150] ; Peng Cheng Laboratory The Major Key Project of PCL[PCL2021A08] ; Guangdong Basic and Applied Basic Research Foundation[2019B1515120031]
WOS研究方向
Telecommunications
WOS类目
Telecommunications
WOS记录号
WOS:001009931100023
出版者
EI入藏号
20221611994228
EI主题词
Electric load management ; Learning systems
EI分类号
Electric Power Systems:706.1 ; Telecommunication; Radar, Radio and Television:716 ; Telephone Systems and Related Technologies; Line Communications:718 ; Data Processing and Image Processing:723.2
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9757234
引用统计
被引频次[WOS]:22
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/334467
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.Chinese University of Hong Kong, Hong Kong, China
2.Peng Cheng Laboratory, Shenzhen, Guangdong, China
3.Southern University of Science and Technology, Shenzhen Guangdong, China, and Peng Cheng Laboratory, Shenzhen, Guangdong, China
4.Southern University of Science and Technology, Shenzhen Guangdong, China, Peng Cheng Laboratory, Shenzhen, Guangdong, China, and Heyuan Bay Area Digital Economy Technology Innovation Center, Heyuan, Guangdong, China
5.Department of Computer Science, University of Victoria, Victoria, BC, Canada
6.Global Information and Telecommunication Institute, Waseda University, Shinjuku, Tokyo, Japan
7.School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology, Kitami, Japan
推荐引用方式
GB/T 7714
Zhang,Yu,Tang,Guoming,Huang,Qianyi,et al. FedNILM: Applying Federated Learning to NILM Applications at the Edge[J]. IEEE Transactions on Green Communications and Networking,2022,PP(99):1-1.
APA
Zhang,Yu.,Tang,Guoming.,Huang,Qianyi.,Wang,Yi.,Wu,Kui.,...&Shao,Xun.(2022).FedNILM: Applying Federated Learning to NILM Applications at the Edge.IEEE Transactions on Green Communications and Networking,PP(99),1-1.
MLA
Zhang,Yu,et al."FedNILM: Applying Federated Learning to NILM Applications at the Edge".IEEE Transactions on Green Communications and Networking PP.99(2022):1-1.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
10.1109@TGCN.2022.31(712KB)----开放获取--浏览
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Yu]的文章
[Tang,Guoming]的文章
[Huang,Qianyi]的文章
百度学术
百度学术中相似的文章
[Zhang,Yu]的文章
[Tang,Guoming]的文章
[Huang,Qianyi]的文章
必应学术
必应学术中相似的文章
[Zhang,Yu]的文章
[Tang,Guoming]的文章
[Huang,Qianyi]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@TGCN.2022.3167392.pdf
格式: Adobe PDF
文件名: 10.1109@TGCN.2022.3167392.pdf
格式: Adobe PDF
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。