中文版 | English
题名

An Ensemble-Learning Approach To Predict the Coke Yield of Commercial FCC Unit

作者
通讯作者Lan,Xingying
发表日期
2021
DOI
发表期刊
ISSN
0888-5885
EISSN
1520-5045
卷号61页码:8422-8431
摘要
This work proposes an ensemble learning-based catalytic cracking coke yield prediction model called the harmonic-ensembled extreme learning machine (HEELM). The model integrates extreme learning machine (ELM) base learners with different activation functions to improve the overall prediction effect. An overfitting index is proposed, and the optimal number of hidden layer nodes of ELM-base learners is determined with it. By examining the influence of different activation functions on the prediction results, the best activation function structure of the ELM-base learner has been determined. Besides, a harmonic layer is established to determine the weight of each base learner in real-time. The proposed model is validated using 1.5 years of historical data from China's commercial fluidized catalytic cracking (FCC) plant. The results show that the proposed model has outperformed most other ELM-base learners. The relative prediction error is further reduced by 10.97% after introducing the harmonic layer. The proposed model exhibits stable performance with good generalization in three segments of industrial data, and it has guiding significance for stable operation and CO2 emission reduction of the FCC plant.
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
其他
EI入藏号
20221812046268
EI主题词
Chemical activation ; Coke ; Cracks ; Emission control ; Fluidization ; Forecasting ; Knowledge acquisition
EI分类号
Air Pollution Control:451.2 ; Solid Fuels:524 ; Artificial Intelligence:723.4 ; Chemical Reactions:802.2 ; Chemical Operations:802.3 ; Chemical Products Generally:804 ; Numerical Methods:921.6
ESI学科分类
CHEMISTRY
Scopus记录号
2-s2.0-85129060658
来源库
Scopus
引用统计
被引频次[WOS]:9
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/334485
专题理学院_化学系
作者单位
1.State Key Laboratory of Heavy Oil Processing,China University of Petroleum-Beijing,Beijing,102249,China
2.Department of Chemistry and Clean Energy Institute,Southern University of Science and Technology,Shenzhen,518055,China
推荐引用方式
GB/T 7714
Zhang,Mengxuan,Cao,Daofan,Lan,Xingying,et al. An Ensemble-Learning Approach To Predict the Coke Yield of Commercial FCC Unit[J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH,2021,61:8422-8431.
APA
Zhang,Mengxuan,Cao,Daofan,Lan,Xingying,Shi,Xiaogang,&Gao,Jinsen.(2021).An Ensemble-Learning Approach To Predict the Coke Yield of Commercial FCC Unit.INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH,61,8422-8431.
MLA
Zhang,Mengxuan,et al."An Ensemble-Learning Approach To Predict the Coke Yield of Commercial FCC Unit".INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH 61(2021):8422-8431.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Mengxuan]的文章
[Cao,Daofan]的文章
[Lan,Xingying]的文章
百度学术
百度学术中相似的文章
[Zhang,Mengxuan]的文章
[Cao,Daofan]的文章
[Lan,Xingying]的文章
必应学术
必应学术中相似的文章
[Zhang,Mengxuan]的文章
[Cao,Daofan]的文章
[Lan,Xingying]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。