中文版 | English
题名

Proximal policy optimization with model-based methods

作者
通讯作者Zhang, Wei; Leng, Yuquan
发表日期
2022
DOI
发表期刊
ISSN
1064-1246
EISSN
1875-8967
卷号42期号:6页码:5399-5410
摘要
Model-free reinforcement learning methods have successfully been applied to practical applications such as decision-making problems in Atari games. However, these methods have inherent shortcomings, such as a high variance and low sample efficiency. To improve the policy performance and sample efficiency of model-free reinforcement learning, we propose proximal policy optimization with model-based methods (PPOMM), a fusion method of both model-based and model-free reinforcement learning. PPOMM not only considers the information of past experience but also the prediction information of the future state. PPOMM adds the information of the next state to the objective function of the proximal policy optimization (PPO) algorithm through a model-based method. This method uses two components to optimize the policy: the error of PPO and the error of model-based reinforcement learning. We use the latter to optimize a latent transition model and predict the information of the next state. For most games, this method outperforms the state-of-the-art PPO algorithm when we evaluate across 49 Atari games in the Arcade Learning Environment (ALE). The experimental results show that PPOMM performs better or the same as the original algorithm in 33 games.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
National Natural Science Foundation of China[52175272] ; State Key Laboratory of Robotics, China[2020-KF-22-03] ; StateKey Laboratory of Robotics Foundation[Y91Z0303] ; China Postdoctoral Science Foundation[2020M670814] ; Liaoning Provincial Natural Science Foundation[2020-MS-033]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:000790690300042
出版者
EI入藏号
20222012111244
EI主题词
Computer aided instruction ; Decision making ; Reinforcement learning
EI分类号
Artificial Intelligence:723.4 ; Computer Applications:723.5 ; Education:901.2 ; Management:912.2 ; Production Engineering:913.1
ESI学科分类
COMPUTER SCIENCE
来源库
Web of Science
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/334722
专题工学院_机械与能源工程系
作者单位
1.Chinese Acad Sci, Shenyang Inst Automat, State Key Lab Robot, Shenyang, Peoples R China
2.Chinese Acad Sci, Inst Robot & Intelligent Mfg, Shenyang, Peoples R China
3.Univ Chinese Acad Sci, Beijing, Peoples R China
4.CVTE Res, Guangzhou, Peoples R China
5.Southern Univ Sci & Technol, Dept Mech & Energy Engn, Shenzhen Key Lab Biomimet Robot & Intelligent Sys, Shenzhen, Peoples R China
6.Southern Univ Sci & Technol, Guangdong Prov Key Lab Human Augmentat & Rehabil, Shenzhen, Peoples R China
通讯作者单位机械与能源工程系;  南方科技大学
推荐引用方式
GB/T 7714
Li, Shuailong,Zhang, Wei,Zhang, Huiwen,et al. Proximal policy optimization with model-based methods[J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS,2022,42(6):5399-5410.
APA
Li, Shuailong,Zhang, Wei,Zhang, Huiwen,Zhang, Xin,&Leng, Yuquan.(2022).Proximal policy optimization with model-based methods.JOURNAL OF INTELLIGENT & FUZZY SYSTEMS,42(6),5399-5410.
MLA
Li, Shuailong,et al."Proximal policy optimization with model-based methods".JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 42.6(2022):5399-5410.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li, Shuailong]的文章
[Zhang, Wei]的文章
[Zhang, Huiwen]的文章
百度学术
百度学术中相似的文章
[Li, Shuailong]的文章
[Zhang, Wei]的文章
[Zhang, Huiwen]的文章
必应学术
必应学术中相似的文章
[Li, Shuailong]的文章
[Zhang, Wei]的文章
[Zhang, Huiwen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。