中文版 | English
题名

Minimizing L (1) over L (2) norms on the gradient

作者
通讯作者Lou, Yifei
发表日期
2022-06-01
DOI
发表期刊
ISSN
0266-5611
EISSN
1361-6420
卷号38期号:6
摘要
In this paper, we study the L (1)/L (2) minimization on the gradient for imaging applications. Several recent works have demonstrated that L (1)/L (2) is better than the L (1) norm when approximating the L (0) norm to promote sparsity. Consequently, we postulate that applying L (1)/L (2) on the gradient is better than the classic total variation (the L (1) norm on the gradient) to enforce the sparsity of the image gradient. Numerically, we design a specific splitting scheme, under which we can prove subsequential and global convergence for the alternating direction method of multipliers (ADMM) under certain conditions. Experimentally, we demonstrate visible improvements of L (1)/L (2) over L (1) and other nonconvex regularizations for image recovery from low-frequency measurements and two medical applications of magnetic resonance imaging and computed tomography reconstruction. Finally, we reveal some empirical evidence on the superiority of L (1)/L (2) over L (1) when recovering piecewise constant signals from low-frequency measurements to shed light on future works.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一
资助项目
HKRGC[CityU11301120] ; NSF CCF HDR TRIPODS Grant[1934568] ; Natural Science Foundation of China[11971228] ; Jiangsu Provincial National Natural Science Foundation of China[BK20181257] ; NSF["DMS-1819042","CAREER 1846690"] ; NIH[5R01CA181171-04]
WOS研究方向
Mathematics ; Physics
WOS类目
Mathematics, Applied ; Physics, Mathematical
WOS记录号
WOS:000792472200001
出版者
EI入藏号
20222112136879
EI主题词
Computerized tomography ; Frequency multiplying circuits ; Image enhancement ; Magnetic resonance imaging ; Medical applications ; Medical imaging
EI分类号
Biomedical Engineering:461.1 ; Magnetism: Basic Concepts and Phenomena:701.2 ; Electronic Circuits Other Than Amplifiers, Oscillators, Modulators, Limiters, Discriminators or Mixers:713.5 ; Computer Applications:723.5 ; Imaging Techniques:746
ESI学科分类
PHYSICS
来源库
Web of Science
引用统计
被引频次[WOS]:12
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/334724
专题理学院_统计与数据科学系
作者单位
1.Southern Univ Sci & Technol, Dept Stat & Data Sci, Shenzhen 518055, Peoples R China
2.Univ Calif Davis, Dept Elect & Comp Engn, Davis, CA 95616 USA
3.Nanjing Univ, Dept Math, Natl Key Lab Novel Software Technol, Nanjing 210093, Peoples R China
4.Emory Univ, Dept Math, Atlanta, GA 30322 USA
5.Univ Texas Dallas, Dept Math Sci, Richardson, TX 75080 USA
第一作者单位统计与数据科学系
第一作者的第一单位统计与数据科学系
推荐引用方式
GB/T 7714
Wang, Chao,Tao, Min,Chuah, Chen-Nee,et al. Minimizing L (1) over L (2) norms on the gradient[J]. INVERSE PROBLEMS,2022,38(6).
APA
Wang, Chao,Tao, Min,Chuah, Chen-Nee,Nagy, James,&Lou, Yifei.(2022).Minimizing L (1) over L (2) norms on the gradient.INVERSE PROBLEMS,38(6).
MLA
Wang, Chao,et al."Minimizing L (1) over L (2) norms on the gradient".INVERSE PROBLEMS 38.6(2022).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
10.1088@1361-6420@ac(2482KB)----开放获取--浏览
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang, Chao]的文章
[Tao, Min]的文章
[Chuah, Chen-Nee]的文章
百度学术
百度学术中相似的文章
[Wang, Chao]的文章
[Tao, Min]的文章
[Chuah, Chen-Nee]的文章
必应学术
必应学术中相似的文章
[Wang, Chao]的文章
[Tao, Min]的文章
[Chuah, Chen-Nee]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1088@1361-6420@ac64fb.pdf
格式: Adobe PDF
文件名: 10.1088@1361-6420@ac64fb.pdf
格式: Adobe PDF
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。