中文版 | English
题名

Automatically Extracting Surface-Wave Group and Phase Velocity Dispersion Curves from Dispersion Spectrograms Using a Convolutional Neural Network

作者
通讯作者Zhang, Haijiang
发表日期
2022-05-01
DOI
发表期刊
ISSN
0895-0695
EISSN
1938-2057
卷号93期号:3页码:1549-1563
摘要
To image high-resolution crustal and upper-mantle structures, ambient noise tomography (ANT) has been widely used on local and regional dense seismic arrays. One of the key steps in ANT is to extract surface-wave group and phase velocity dispersion curves from cross-correlation functions of continuous ambient noise recordings. One traditional way is to manually pick the dispersion curves from dispersion spectrograms in the period-velocity domains, which is very labor intensive and time consuming. Another way is to automatically pick the dispersion curves using some predefined criteria, which are not reliable in many cases especially for phase velocity data. In this study, we propose a novel method named DisperPicker to automatically extract fundamental mode group and phase velocity dispersion curves using a convolutional neural network (CNN). The inputs to CNN include paired group and phase velocity dispersion spectrograms in the period-velocity domains, which are calculated from empirical surface-wave Green's functions. In this way, group velocity dispersion curves can implicitly guide the extraction of phase velocity dispersion curves, which have large ambiguities to pick on the dispersion spectrograms. The labels or outputs of the network are the probability images converted from dispersion curves. The U-net architecture is adopted because it is powerful for image processing. We have assembled short-period surfacewave data from three different dense seismic arrays to train the network. The trained network is further tested and validated by two datasets close to Chao Lake, China. The tests show that DisperPicker has the generalization ability to efficiently and accurately extract dispersion curves of large datasets without new training.
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Key R&D Program of China[2018YFC1504102] ; National Natural Science Foundation of China[41961134001]
WOS研究方向
Geochemistry & Geophysics
WOS类目
Geochemistry & Geophysics
WOS记录号
WOS:000792403700003
出版者
EI入藏号
20222012120906
EI主题词
Acoustic noise ; Convolution ; Image processing ; Large dataset ; Phase velocity ; Seismology ; Spectrographs
EI分类号
Earthquake Measurements and Analysis:484.1 ; Electromagnetic Waves in Different Media:711.1 ; Information Theory and Signal Processing:716.1 ; Data Processing and Image Processing:723.2 ; Optical Devices and Systems:741.3 ; Acoustic Noise:751.4
ESI学科分类
GEOSCIENCES
来源库
Web of Science
引用统计
被引频次[WOS]:6
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/334727
专题理学院_地球与空间科学系
作者单位
1.Univ Sci & Technol China, Sch Earth & Space Sci, Lab Seismol & Phys Earths Interior, Hefei, Anhui, Peoples R China
2.Univ Sci & Technol China, Mengcheng Natl Geophys Observ, Hefei, Anhui, Peoples R China
3.Southern Univ Sci & Technol, Dept Earth & Space Sci, Shenzhen, Peoples R China
推荐引用方式
GB/T 7714
Yang, Shaobo,Zhang, Haijiang,Gu, Ning,et al. Automatically Extracting Surface-Wave Group and Phase Velocity Dispersion Curves from Dispersion Spectrograms Using a Convolutional Neural Network[J]. SEISMOLOGICAL RESEARCH LETTERS,2022,93(3):1549-1563.
APA
Yang, Shaobo.,Zhang, Haijiang.,Gu, Ning.,Gao, Ji.,Xu, Jian.,...&Yao, Huajian.(2022).Automatically Extracting Surface-Wave Group and Phase Velocity Dispersion Curves from Dispersion Spectrograms Using a Convolutional Neural Network.SEISMOLOGICAL RESEARCH LETTERS,93(3),1549-1563.
MLA
Yang, Shaobo,et al."Automatically Extracting Surface-Wave Group and Phase Velocity Dispersion Curves from Dispersion Spectrograms Using a Convolutional Neural Network".SEISMOLOGICAL RESEARCH LETTERS 93.3(2022):1549-1563.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yang, Shaobo]的文章
[Zhang, Haijiang]的文章
[Gu, Ning]的文章
百度学术
百度学术中相似的文章
[Yang, Shaobo]的文章
[Zhang, Haijiang]的文章
[Gu, Ning]的文章
必应学术
必应学术中相似的文章
[Yang, Shaobo]的文章
[Zhang, Haijiang]的文章
[Gu, Ning]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。