中文版 | English
题名

CCFR3: A cooperative co-evolution with efficient resource allocation for large-scale global optimization

作者
通讯作者Lu,Xiaofen
发表日期
2022-10-01
DOI
发表期刊
ISSN
0957-4174
EISSN
1873-6793
卷号203
摘要

Cooperative co-evolution (CC) adopts the divide-and-conquer strategy to decompose an optimization problem, which can decrease the difficulty of solving large-scale optimization problems. Each decomposed subproblem is solved by a subpopulation. According to the contributions of the subpopulations to the improvement of the best overall objective value, the CC algorithms select the subpopulation with the greatest contribution to undergo evolution. In the existing CC algorithms, the contribution evaluation cannot adapt to solve the optimization problem, which may decrease the performance of CC. In this paper, we propose a new CC framework named CCFR3, which can adaptively evaluate the contribution of a subpopulation in each co-evolutionary cycle. CCFR3 can allocate computational resources among subpopulations more frequently than other contribution-based CC algorithms. The subpopulations can have more chances to undergo evolution, which is beneficial to speed up the convergence of CC and enhance the performance of CC on obtaining the global optimal solution. Our experimental results and analysis suggest that CCFR3 is a competitive solver for large-scale optimization problems.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
Natural Science Foundation of Hubei Province[2019CFB584]
WOS研究方向
Computer Science ; Engineering ; Operations Research & Management Science
WOS类目
Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic ; Operations Research & Management Science
WOS记录号
WOS:000803583200008
出版者
EI入藏号
20221912100403
EI主题词
Evolutionary Algorithms ; Global Optimization
EI分类号
Management:912.2 ; Optimization Techniques:921.5
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85129718091
来源库
Scopus
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/334784
专题工学院_计算机科学与工程系
作者单位
1.School of Computer Science,China University of Geosciences,Wuhan,No. 388 Lumo Road, Hubei,430074,China
2.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,1088 Xueyuan Avenue, Guangdong,518055,China
3.School of Computer Science and Technology,East China Normal University,500 Dongchuan Road, Shanghai,200062,China
4.School of Automation,China University of Geosciences,Wuhan,No. 388 Lumo Road, Hubei,430074,China
5.China Ship Development and Design Center,Wuhan,No. 268 Zhangzhidong Road, Hubei,430064,China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
推荐引用方式
GB/T 7714
Yang,Ming,Zhou,Aimin,Lu,Xiaofen,et al. CCFR3: A cooperative co-evolution with efficient resource allocation for large-scale global optimization[J]. EXPERT SYSTEMS WITH APPLICATIONS,2022,203.
APA
Yang,Ming,Zhou,Aimin,Lu,Xiaofen,Cai,Zhihua,Li,Changhe,&Guan,Jing.(2022).CCFR3: A cooperative co-evolution with efficient resource allocation for large-scale global optimization.EXPERT SYSTEMS WITH APPLICATIONS,203.
MLA
Yang,Ming,et al."CCFR3: A cooperative co-evolution with efficient resource allocation for large-scale global optimization".EXPERT SYSTEMS WITH APPLICATIONS 203(2022).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
ESWA2022_CCFR3_A coo(1143KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yang,Ming]的文章
[Zhou,Aimin]的文章
[Lu,Xiaofen]的文章
百度学术
百度学术中相似的文章
[Yang,Ming]的文章
[Zhou,Aimin]的文章
[Lu,Xiaofen]的文章
必应学术
必应学术中相似的文章
[Yang,Ming]的文章
[Zhou,Aimin]的文章
[Lu,Xiaofen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。