题名 | CCFR3: A cooperative co-evolution with efficient resource allocation for large-scale global optimization |
作者 | |
通讯作者 | Lu,Xiaofen |
发表日期 | 2022-10-01
|
DOI | |
发表期刊 | |
ISSN | 0957-4174
|
EISSN | 1873-6793
|
卷号 | 203 |
摘要 | Cooperative co-evolution (CC) adopts the divide-and-conquer strategy to decompose an optimization problem, which can decrease the difficulty of solving large-scale optimization problems. Each decomposed subproblem is solved by a subpopulation. According to the contributions of the subpopulations to the improvement of the best overall objective value, the CC algorithms select the subpopulation with the greatest contribution to undergo evolution. In the existing CC algorithms, the contribution evaluation cannot adapt to solve the optimization problem, which may decrease the performance of CC. In this paper, we propose a new CC framework named CCFR3, which can adaptively evaluate the contribution of a subpopulation in each co-evolutionary cycle. CCFR3 can allocate computational resources among subpopulations more frequently than other contribution-based CC algorithms. The subpopulations can have more chances to undergo evolution, which is beneficial to speed up the convergence of CC and enhance the performance of CC on obtaining the global optimal solution. Our experimental results and analysis suggest that CCFR3 is a competitive solver for large-scale optimization problems. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | Natural Science Foundation of Hubei Province[2019CFB584]
|
WOS研究方向 | Computer Science
; Engineering
; Operations Research & Management Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Engineering, Electrical & Electronic
; Operations Research & Management Science
|
WOS记录号 | WOS:000803583200008
|
出版者 | |
EI入藏号 | 20221912100403
|
EI主题词 | Evolutionary Algorithms
; Global Optimization
|
EI分类号 | Management:912.2
; Optimization Techniques:921.5
|
ESI学科分类 | ENGINEERING
|
Scopus记录号 | 2-s2.0-85129718091
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:2
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/334784 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.School of Computer Science,China University of Geosciences,Wuhan,No. 388 Lumo Road, Hubei,430074,China 2.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,1088 Xueyuan Avenue, Guangdong,518055,China 3.School of Computer Science and Technology,East China Normal University,500 Dongchuan Road, Shanghai,200062,China 4.School of Automation,China University of Geosciences,Wuhan,No. 388 Lumo Road, Hubei,430074,China 5.China Ship Development and Design Center,Wuhan,No. 268 Zhangzhidong Road, Hubei,430064,China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Yang,Ming,Zhou,Aimin,Lu,Xiaofen,et al. CCFR3: A cooperative co-evolution with efficient resource allocation for large-scale global optimization[J]. EXPERT SYSTEMS WITH APPLICATIONS,2022,203.
|
APA |
Yang,Ming,Zhou,Aimin,Lu,Xiaofen,Cai,Zhihua,Li,Changhe,&Guan,Jing.(2022).CCFR3: A cooperative co-evolution with efficient resource allocation for large-scale global optimization.EXPERT SYSTEMS WITH APPLICATIONS,203.
|
MLA |
Yang,Ming,et al."CCFR3: A cooperative co-evolution with efficient resource allocation for large-scale global optimization".EXPERT SYSTEMS WITH APPLICATIONS 203(2022).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
ESWA2022_CCFR3_A coo(1143KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论