中文版 | English
题名

Learning-based Fuzzy Bitrate Matching at the Edge for Adaptive Video Streaming

作者
通讯作者Li,Qing
DOI
发表日期
2022-04-25
会议名称
31st ACM Web Conference (WWW)
会议录名称
页码
3289-3297
会议日期
APR 25-29, 2022
会议地点
null,null,ELECTR NETWORK
出版地
1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
出版者
摘要
The rapid growth of video traffic imposes significant challenges on content delivery over the Internet. Meanwhile, edge computing is developed to accelerate video transmission as well as release the traffic load of origin servers. Although some related techniques (e.g., transcoding and prefetching) are proposed to improve edge services, they cannot fully utilize cached videos. Therefore, we propose a Learning-based Fuzzy Bitrate Matching scheme (LFBM) at the edge for adaptive video streaming, which utilizes the capacity of network and edge servers. In accordance with user requests, cache states and network conditions, LFBM utilizes reinforcement learning to make a decision, either fetching the video of the exact bitrate from the origin server or responding with a different representation from the edge server. In the simulation, compared with the baseline, LFBM improves cache hit ratio by 128%. Besides, compared with the scheme without fuzzy bitrate matching, it improves Quality of Experience (QoE) by 45%. Moreover, the real-network experiments further demonstrate the effectiveness of LFBM. It increases the hit ratio by 84% compared with the baseline and improves the QoE by 51% compared with the scheme without fuzzy bitrate matching.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
Key-Area Research and Development Program of Guangdong Province[2020B0101130006] ; National Natural Science Foundation of China[61972189] ; Shenzhen Key Lab of Software Defined Networking[ZDSYS20140509172959989] ; Social Science Fund of Shenzhen[SZ2020D009] ; China Postdoctoral Science Foundation[2021M700091]
WOS研究方向
Computer Science
WOS类目
Computer Science, Cybernetics ; Computer Science, Software Engineering ; Computer Science, Theory & Methods
WOS记录号
WOS:000852713003036
EI入藏号
20222012110658
EI主题词
Image communication systems ; Quality of service ; Reinforcement learning ; Video streaming
EI分类号
Digital Computers and Systems:722.4 ; Artificial Intelligence:723.4
Scopus记录号
2-s2.0-85129893988
来源库
Scopus
引用统计
被引频次[WOS]:3
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/334820
专题南方科技大学
作者单位
1.International Graduate School,Tsinghua University,Shenzhen,China
2.Peng Cheng Laboratory,Shenzhen,China
3.Tsinghua-Berkeley Shenzhen Institute,Tsinghua University,Shenzhen,China
4.Southern University of Science and Technology,Shenzhen,China
5.Sangfor Technologies Incorporation,Shenzhen,China
6.Beijing University of Posts and Telecommunications,Beijing,China
推荐引用方式
GB/T 7714
Shi,Wanxin,Li,Qing,Wang,Chao,et al. Learning-based Fuzzy Bitrate Matching at the Edge for Adaptive Video Streaming[C]. 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES:ASSOC COMPUTING MACHINERY,2022:3289-3297.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Shi,Wanxin]的文章
[Li,Qing]的文章
[Wang,Chao]的文章
百度学术
百度学术中相似的文章
[Shi,Wanxin]的文章
[Li,Qing]的文章
[Wang,Chao]的文章
必应学术
必应学术中相似的文章
[Shi,Wanxin]的文章
[Li,Qing]的文章
[Wang,Chao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。