中文版 | English
题名

Discrete unified gas-kinetic scheme for the conservative Allen-Cahn equation

作者
发表日期
2022-04-01
DOI
发表期刊
ISSN
2470-0045
EISSN
2470-0053
卷号105期号:4
摘要
In this paper, two discrete unified gas-kinetic scheme (DUGKS) methods with piecewise-parabolic flux reconstruction are presented for the conservative Allen-Cahn equation (CACE). One includes a temporal derivative of the order parameter in the force term while the other does not include temporal derivative in the force term but results in a modified CACE with additional terms. In the context of DUGKS, the continuum equations recovered from the piecewise-linear and piecewise-parabolic reconstructions for the fluxes at cell faces are subsequently derived. It is proved that the resulting equation with the piecewise-linear reconstruction is a first-order approximation to the discrete velocity kinetic equation due to the presence of the force term and the nonconservation property of the momentum of the collision model. To guarantee second-order accuracy of DUGKS, the piecewise-parabolic reconstruction for numerical flux is proposed. To validate the accuracy of the present DUGKS with the proposed flux evaluation, several benchmark problems, including the diagonal translation of a circular interface, the rotation of a Zalesak disk and the deformation of a circular interface, have been simulated. Numerical results show that the accuracy of both proposed DUGKS methods is almost comparable and improved compared with the DUGKS with linear flux reconstruction scheme.
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一
资助项目
National Natural Science Foundation of China[51836003,11972142,51806142,91852205,91741101,11961131006] ; NSFC Basic Science Center Program[11988102] ; Guangdong Provincial Key Laboratory of Turbulence Re-search and Applications[2019B21203001] ; Guangdong-Hong Kong-Macao Joint Laboratory for Data-Driven Fluid Mechanics and Engineering Applications[2020B1212030001] ; Shenzhen Science and Tech-nology Program[KQTD20180411143441009]
WOS研究方向
Physics
WOS类目
Physics, Fluids & Plasmas ; Physics, Mathematical
WOS记录号
WOS:000796449100004
出版者
EI入藏号
20222012103114
EI主题词
Integral equations ; Kinetics ; Numerical methods
EI分类号
Fluid Flow, General:631.1 ; Calculus:921.2 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 ; Numerical Methods:921.6 ; Classical Physics; Quantum Theory; Relativity:931
ESI学科分类
PHYSICS
Scopus记录号
2-s2.0-85129732880
来源库
Scopus
引用统计
被引频次[WOS]:6
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/334829
专题工学院_力学与航空航天工程系
作者单位
1.Guangdong Provincial Key Laboratory of Turbulence Research and Applications,Department of Mechanics and Aerospace Engineering,Southern University of Science and Technology,Guangdong,Shenzhen,518055,China
2.Department of Physics,Hangzhou Dianzi University,Hangzhou,310018,China
3.State Key Laboratory of Coal Combustion,Huazhong University of Science and Technology,Wuhan,430074,China
4.Center for Complex Flows and Soft Matter Research,Southern University of Science and Technology,Guangdong,Shenzhen,518055,China
5.Guangdong-Hong Kong-Macao Jt. Lab. for Data-Driven Fluid Mechanics and Engineering Applications,Southern University of Science and Technology,Guangdong,Shenzhen,518055,China
第一作者单位力学与航空航天工程系
第一作者的第一单位力学与航空航天工程系
推荐引用方式
GB/T 7714
Zhang,Chunhua,Liang,Hong,Guo,Zhaoli,et al. Discrete unified gas-kinetic scheme for the conservative Allen-Cahn equation[J]. Physical Review E,2022,105(4).
APA
Zhang,Chunhua,Liang,Hong,Guo,Zhaoli,&Wang,Lian Ping.(2022).Discrete unified gas-kinetic scheme for the conservative Allen-Cahn equation.Physical Review E,105(4).
MLA
Zhang,Chunhua,et al."Discrete unified gas-kinetic scheme for the conservative Allen-Cahn equation".Physical Review E 105.4(2022).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
10.1103@PhysRevE.105(1041KB)----开放获取--浏览
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Chunhua]的文章
[Liang,Hong]的文章
[Guo,Zhaoli]的文章
百度学术
百度学术中相似的文章
[Zhang,Chunhua]的文章
[Liang,Hong]的文章
[Guo,Zhaoli]的文章
必应学术
必应学术中相似的文章
[Zhang,Chunhua]的文章
[Liang,Hong]的文章
[Guo,Zhaoli]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1103@PhysRevE.105.045317.pdf
格式: Adobe PDF
文件名: 10.1103@PhysRevE.105.045317.pdf
格式: Adobe PDF
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。