题名 | Lesion2void: Unsupervised Anomaly Detection in Fundus Images |
作者 | |
通讯作者 | Tang, Xiaoying |
DOI | |
发表日期 | 2022
|
会议名称 | 19th IEEE International Symposium on Biomedical Imaging (IEEE ISBI)
|
ISSN | 1945-7928
|
EISSN | 1945-8452
|
ISBN | 978-1-6654-2924-5
|
会议录名称 | |
页码 | 1-5
|
会议日期 | 28-31 March 2022
|
会议地点 | Kolkata, India
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Anomalous data are usually rare in the field of medical imaging, in contrast to normal (healthy) data that account for the vast majority of the real-world medical image data, leading to challenges of developing image-based disease detection algorithms. In this work, we propose an unsupervised anomaly detection framework for diabetic retinopathy (DR) identification from fundus images, named Lesion2Void. Lesion2Void is capable of identifying anomalies in fundus images by only leveraging normal data without any additional annotation during training. We first randomly mask out multiple patches in normal fundus images. Then, a convolutional neural network is trained to reconstruct the corresponding complete images. We make a simple assumption that in a fundus image, lesion patches, if present, are independent of each other and are also independent of their neighboring pixels, whereas normal patches can be predicted based on the information from the neighborhood. Therefore, in the testing phase, an image can be identified as normal or abnormal by measuring the reconstruction errors of the erased patches. Extensive experiments are conducted on the publicly accessible dataset EyeQ, demonstrating the superiority of our proposed framework for DR-related anomaly detection in fundus images. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | Shenzhen Basic Research Program[
|
WOS研究方向 | Engineering
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS类目 | Engineering, Biomedical
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS记录号 | WOS:000836243800192
|
EI入藏号 | 20221912089197
|
EI主题词 | Anomaly Detection
; Convolutional Neural Networks
; Eye Protection
; Medical Imaging
|
EI分类号 | Biomedical Engineering:461.1
; Imaging Techniques:746
; Accidents And Accident Prevention:914.1
|
Scopus记录号 | 2-s2.0-85129592018
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9761593 |
引用统计 |
被引频次[WOS]:10
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/334856 |
专题 | 工学院_电子与电气工程系 |
作者单位 | Southern University of Science and Technology,Department of Electronic and Electrical Engineering,Shenzhen,China |
第一作者单位 | 电子与电气工程系 |
通讯作者单位 | 电子与电气工程系 |
第一作者的第一单位 | 电子与电气工程系 |
推荐引用方式 GB/T 7714 |
Huang, Yijin,Huang, Weikai,Luo, Wenhao,et al. Lesion2void: Unsupervised Anomaly Detection in Fundus Images[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2022:1-5.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论