中文版 | English
题名

Lesion2void: Unsupervised Anomaly Detection in Fundus Images

作者
通讯作者Tang, Xiaoying
DOI
发表日期
2022
会议名称
19th IEEE International Symposium on Biomedical Imaging (IEEE ISBI)
ISSN
1945-7928
EISSN
1945-8452
ISBN
978-1-6654-2924-5
会议录名称
页码
1-5
会议日期
28-31 March 2022
会议地点
Kolkata, India
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要

Anomalous data are usually rare in the field of medical imaging, in contrast to normal (healthy) data that account for the vast majority of the real-world medical image data, leading to challenges of developing image-based disease detection algorithms. In this work, we propose an unsupervised anomaly detection framework for diabetic retinopathy (DR) identification from fundus images, named Lesion2Void. Lesion2Void is capable of identifying anomalies in fundus images by only leveraging normal data without any additional annotation during training. We first randomly mask out multiple patches in normal fundus images. Then, a convolutional neural network is trained to reconstruct the corresponding complete images. We make a simple assumption that in a fundus image, lesion patches, if present, are independent of each other and are also independent of their neighboring pixels, whereas normal patches can be predicted based on the information from the neighborhood. Therefore, in the testing phase, an image can be identified as normal or abnormal by measuring the reconstruction errors of the erased patches. Extensive experiments are conducted on the publicly accessible dataset EyeQ, demonstrating the superiority of our proposed framework for DR-related anomaly detection in fundus images.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
Shenzhen Basic Research Program[
WOS研究方向
Engineering ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:000836243800192
EI入藏号
20221912089197
EI主题词
Anomaly Detection ; Convolutional Neural Networks ; Eye Protection ; Medical Imaging
EI分类号
Biomedical Engineering:461.1 ; Imaging Techniques:746 ; Accidents And Accident Prevention:914.1
Scopus记录号
2-s2.0-85129592018
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9761593
引用统计
被引频次[WOS]:10
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/334856
专题工学院_电子与电气工程系
作者单位
Southern University of Science and Technology,Department of Electronic and Electrical Engineering,Shenzhen,China
第一作者单位电子与电气工程系
通讯作者单位电子与电气工程系
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Huang, Yijin,Huang, Weikai,Luo, Wenhao,et al. Lesion2void: Unsupervised Anomaly Detection in Fundus Images[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2022:1-5.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Huang, Yijin]的文章
[Huang, Weikai]的文章
[Luo, Wenhao]的文章
百度学术
百度学术中相似的文章
[Huang, Yijin]的文章
[Huang, Weikai]的文章
[Luo, Wenhao]的文章
必应学术
必应学术中相似的文章
[Huang, Yijin]的文章
[Huang, Weikai]的文章
[Luo, Wenhao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。