中文版 | English
题名

Unsupervised Domain Adaptation for Cross-Modality Retinal Vessel Segmentation via Disentangling Representation Style Transfer and Collaborative Consistency Learning

作者
通讯作者Tang, Xiaoying
DOI
发表日期
2022
会议名称
19th IEEE International Symposium on Biomedical Imaging (IEEE ISBI)
ISSN
1945-7928
EISSN
1945-8452
ISBN
978-1-6654-2924-5
会议录名称
页码
1-5
会议日期
28-31 March 2022
会议地点
Kolkata, India
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要

Various deep learning models have been developed to segment anatomical structures from medical images, but they typically have poor performance when tested on another target domain with different data distribution. Recently, unsupervised domain adaptation methods have been proposed to alleviate this so-called domain shift issue, but most of them are designed for scenarios with relatively small domain shifts and are likely to fail when encountering a large domain gap. In this paper, we propose DCDA, a novel cross-modality unsupervised domain adaptation framework for tasks with large domain shifts, e.g., segmenting retinal vessels from OCTA and OCT images. DCDA mainly consists of a disentangling representation style transfer (DRST) module and a collaborative consistency learning (CCL) module. DRST decomposes images into content components and style codes and performs style transfer and image reconstruction. CCL contains two segmentation models, one for source domain and the other for target domain. The two models use labeled data (together with the corresponding transferred images) for supervised learning and perform collaborative consistency learning on unlabeled data. Each model focuses on the corresponding single domain and aims to yield an expertized domain-specific segmentation model. Through extensive experiments on retinal vessel segmentation, our framework achieves Dice scores close to target-trained oracle both from OCTA to OCT and from OCT to OCTA, significantly outperforming other state-of-the-art methods.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
Shenzhen Basic Research Program[JCYJ20200925153847004]
WOS研究方向
Engineering ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:000836243800271
EI入藏号
20221912089277
EI主题词
Computer Vision ; Deep Learning ; Image Segmentation ; Medical Imaging ; Ophthalmology
EI分类号
Biomedical Engineering:461.1 ; Ergonomics And Human Factors Engineering:461.4 ; Medicine And Pharmacology:461.6 ; Computer Applications:723.5 ; Vision:741.2 ; Imaging Techniques:746
Scopus记录号
2-s2.0-85129590697
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9761675
引用统计
被引频次[WOS]:11
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/334857
专题工学院_电子与电气工程系
作者单位
1.Southern University of Science and Technology,Department of Electronic and Electrical Engineering,Shenzhen,China
2.Department of Electrical and Electronic Engineering,The University of Hong Kong,Hong Kong
第一作者单位电子与电气工程系
通讯作者单位电子与电气工程系
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Peng, Linkai,Lin, Li,Cheng, Pujin,et al. Unsupervised Domain Adaptation for Cross-Modality Retinal Vessel Segmentation via Disentangling Representation Style Transfer and Collaborative Consistency Learning[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2022:1-5.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
10.1109@ISBI52829.20(2290KB)----开放获取--浏览
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Peng, Linkai]的文章
[Lin, Li]的文章
[Cheng, Pujin]的文章
百度学术
百度学术中相似的文章
[Peng, Linkai]的文章
[Lin, Li]的文章
[Cheng, Pujin]的文章
必应学术
必应学术中相似的文章
[Peng, Linkai]的文章
[Lin, Li]的文章
[Cheng, Pujin]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@ISBI52829.2022.9761675.pdf
格式: Adobe PDF
文件名: 10.1109@ISBI52829.2022.9761675.pdf
格式: Adobe PDF
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。