题名 | Corolla: An Efficient Multi-Modality Fusion Framework with Supervised Contrastive Learning for Glaucoma Grading |
作者 | |
通讯作者 | Tang,Xiaoying |
DOI | |
发表日期 | 2022
|
会议名称 | 19th IEEE International Symposium on Biomedical Imaging (IEEE ISBI)
|
ISSN | 1945-7928
|
EISSN | 1945-8452
|
ISBN | 978-1-6654-2924-5
|
会议录名称 | |
页码 | 1-4
|
会议日期 | 28-31 March 2022
|
会议地点 | Kolkata, India
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Glaucoma is one of the ophthalmic diseases that may cause blindness, for which early detection and treatment are very important. Fundus images and optical coherence tomography (OCT) images are both widely-used modalities in diagnosing glaucoma. However, existing glaucoma grading approaches mainly utilize a single modality, ignoring the complementary information between fundus and OCT. In this paper, we propose an efficient multi-modality supervised contrastive learning framework, named COROLLA, for glaucoma grading. Through layer segmentation as well as thickness calculation and projection, retinal thickness maps are extracted from the original OCT volumes and used as a replacing modality, resulting in more efficient calculations with less memory usage. Given the high structure and distribution similarities across medical image samples, we employ supervised contrastive learning to increase our models' discriminative power with better convergence. Moreover, feature-level fusion of paired fundus image and thickness map is conducted for enhanced diagnosis accuracy. On the GAMMA dataset, our COROLLA framework achieves overwhelming glaucoma grading performance compared to state-of-the-art methods. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | Shenzhen Basic Research Program[JCYJ20200925153847004]
|
WOS研究方向 | Engineering
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS类目 | Engineering, Biomedical
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS记录号 | WOS:000836243800308
|
EI入藏号 | 20221912089144
|
EI主题词 | Computer Vision
; Diagnosis
; Grading
; Image Enhancement
; Medical Imaging
; Optical Tomography
|
EI分类号 | Biomedical Engineering:461.1
; Medicine And Pharmacology:461.6
; Computer Applications:723.5
; Vision:741.2
; Optical Devices And Systems:741.3
; Imaging Techniques:746
|
Scopus记录号 | 2-s2.0-85129578521
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9761712 |
引用统计 |
被引频次[WOS]:16
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/334858 |
专题 | 工学院_电子与电气工程系 |
作者单位 | Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China |
第一作者单位 | 电子与电气工程系 |
通讯作者单位 | 电子与电气工程系 |
第一作者的第一单位 | 电子与电气工程系 |
推荐引用方式 GB/T 7714 |
Cai,Zhiyuan,Lin,Li,He,Huaqing,et al. Corolla: An Efficient Multi-Modality Fusion Framework with Supervised Contrastive Learning for Glaucoma Grading[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2022:1-4.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
10.1109@ISBI52829.20(1213KB) | -- | -- | 开放获取 | -- | 浏览 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论