中文版 | English
题名

Corolla: An Efficient Multi-Modality Fusion Framework with Supervised Contrastive Learning for Glaucoma Grading

作者
通讯作者Tang,Xiaoying
DOI
发表日期
2022
会议名称
19th IEEE International Symposium on Biomedical Imaging (IEEE ISBI)
ISSN
1945-7928
EISSN
1945-8452
ISBN
978-1-6654-2924-5
会议录名称
页码
1-4
会议日期
28-31 March 2022
会议地点
Kolkata, India
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要

Glaucoma is one of the ophthalmic diseases that may cause blindness, for which early detection and treatment are very important. Fundus images and optical coherence tomography (OCT) images are both widely-used modalities in diagnosing glaucoma. However, existing glaucoma grading approaches mainly utilize a single modality, ignoring the complementary information between fundus and OCT. In this paper, we propose an efficient multi-modality supervised contrastive learning framework, named COROLLA, for glaucoma grading. Through layer segmentation as well as thickness calculation and projection, retinal thickness maps are extracted from the original OCT volumes and used as a replacing modality, resulting in more efficient calculations with less memory usage. Given the high structure and distribution similarities across medical image samples, we employ supervised contrastive learning to increase our models' discriminative power with better convergence. Moreover, feature-level fusion of paired fundus image and thickness map is conducted for enhanced diagnosis accuracy. On the GAMMA dataset, our COROLLA framework achieves overwhelming glaucoma grading performance compared to state-of-the-art methods.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
Shenzhen Basic Research Program[JCYJ20200925153847004]
WOS研究方向
Engineering ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:000836243800308
EI入藏号
20221912089144
EI主题词
Computer Vision ; Diagnosis ; Grading ; Image Enhancement ; Medical Imaging ; Optical Tomography
EI分类号
Biomedical Engineering:461.1 ; Medicine And Pharmacology:461.6 ; Computer Applications:723.5 ; Vision:741.2 ; Optical Devices And Systems:741.3 ; Imaging Techniques:746
Scopus记录号
2-s2.0-85129578521
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9761712
引用统计
被引频次[WOS]:16
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/334858
专题工学院_电子与电气工程系
作者单位
Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China
第一作者单位电子与电气工程系
通讯作者单位电子与电气工程系
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Cai,Zhiyuan,Lin,Li,He,Huaqing,et al. Corolla: An Efficient Multi-Modality Fusion Framework with Supervised Contrastive Learning for Glaucoma Grading[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2022:1-4.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
10.1109@ISBI52829.20(1213KB)----开放获取--浏览
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Cai,Zhiyuan]的文章
[Lin,Li]的文章
[He,Huaqing]的文章
百度学术
百度学术中相似的文章
[Cai,Zhiyuan]的文章
[Lin,Li]的文章
[He,Huaqing]的文章
必应学术
必应学术中相似的文章
[Cai,Zhiyuan]的文章
[Lin,Li]的文章
[He,Huaqing]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@ISBI52829.2022.9761712.pdf
格式: Adobe PDF
文件名: 10.1109@ISBI52829.2022.9761712.pdf
格式: Adobe PDF
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。