题名 | Lagrangian-based spatial-temporal topological study on the evolution and migration of coherent structures in wall turbulence |
作者 | |
通讯作者 | Tian, Haiping; Xu, Fang |
发表日期 | 2022-01-07
|
DOI | |
发表期刊 | |
ISSN | 0567-7718
|
EISSN | 1614-3116
|
卷号 | 38页码:321465 |
摘要 | In this work, we study the development, evolution, and migration of turbulent coherent structures in the turbulent boundary layer at Re-tau = 630 using time-resolved particle image velocimetry (TR-PIV). Multiple techniques, including multi-scale analysis, conditional averaging, cross-correlation, and spatial-temporal topological analysis are applied to extract the evolution principle, migration trajectory, and convection velocity vector of the targeted coherent structures from a Lagrangian perspective. The spanwise vortex structures with larger scale and intensity at a certain wall-normal height y were the main focus of the present study. In the statistical sense, spanwise vortex structures move away from the wall with the shape changing from a bulge to an ellipse, and finally to a circle. Two straight lines emerge from the mean transfer trajectory curve of the spanwise vortex, in which the horizontal one is located at the viscous sublayer (y(+) < 10), the other is a logarithmic straight line existing in the range of 50 < y(+) < 120, and the inclination angle of the tangential migration path is fixed at around 12 degrees. The streamwise convection velocity U-c of scaled spanwise vortex structures satisfies U-c/U-infinity = 0.5-0.6 below y = 0.03 delta (i.e., U-c(+) = 11-13 under y(+) = 20). In particular, in the region of 50 < y(+) < 120, the velocity growth curves of U-c and wall-normal convection velocity V-c follow the log-law distribution very well, and the slopes are consistent with that of the log-law region of the turbulent boundary layer. Our observations provide microscopic evidences of the logarithmic-linear distribution of the migration trajectory of spanwise vortex structures. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | Young Scientists Fund of the National Natural Science Foundation of China[11802195]
; National Natural Science Foundation of China[12172242,11972251]
; Key Program of the National Natural Science Foundation of China[11732010]
; Sino-German Science Center[GZ1575]
; Natural Science Foundation for Young Scientists of Shanxi Province, China[201801D221027]
|
WOS研究方向 | Engineering
; Mechanics
|
WOS类目 | Engineering, Mechanical
; Mechanics
|
WOS记录号 | WOS:000796555100009
|
出版者 | |
EI入藏号 | 20222112135976
|
EI主题词 | Atmospheric Thermodynamics
; Boundary Layer Flow
; Boundary Layers
; Topology
; Turbulence
; Turbulent Flow
; Velocity
; Velocity Measurement
; Vortex Flow
|
EI分类号 | Atmospheric Properties:443.1
; Fluid Flow, General:631.1
; Thermodynamics:641.1
; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
; Special Purpose Instruments:943.3
|
ESI学科分类 | ENGINEERING
|
来源库 | Web of Science
|
出版状态 | 正式出版
|
引用统计 |
被引频次[WOS]:3
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/335003 |
专题 | 工学院_力学与航空航天工程系 |
作者单位 | 1.Taiyuan Univ Technol, Natl Demonstrat Ctr Expt Mech Educ, Taiyuan 030024, Peoples R China 2.Southern Univ Sci & Technol, Dept Mech & Aerosp Engn, Shenzhen 518055, Peoples R China 3.Tianjin Univ, Dept Mech, Tianjin 300350, Peoples R China |
通讯作者单位 | 力学与航空航天工程系 |
推荐引用方式 GB/T 7714 |
Tian, Haiping,Yi, Xingrui,Xu, Fang,et al. Lagrangian-based spatial-temporal topological study on the evolution and migration of coherent structures in wall turbulence[J]. ACTA MECHANICA SINICA,2022,38:321465.
|
APA |
Tian, Haiping,Yi, Xingrui,Xu, Fang,Li, Fen,&Jiang, Nan.(2022).Lagrangian-based spatial-temporal topological study on the evolution and migration of coherent structures in wall turbulence.ACTA MECHANICA SINICA,38,321465.
|
MLA |
Tian, Haiping,et al."Lagrangian-based spatial-temporal topological study on the evolution and migration of coherent structures in wall turbulence".ACTA MECHANICA SINICA 38(2022):321465.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
AC30662638FD4975AE30(1870KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论