1. Cianchetti, M., Laschi, C., Menciassi, A. et al., Biomedical applications of soft robotics. Nature Reviews Materials, 2018, 3(6), 143-153.
2. Shintake, J., Cacucciolo, V., Floreano, D. et al., Soft Robotic Grippers. Adv Mater, 2018, e1707035.
3. Mae, I., Majeed, S., Alaa, A.-I. et al., A Novel Elbow Pneumatic Muscle Actuator for Exoskeleton Arm in Post-Stroke Rehabilitation. 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft), COEX, Seoul, Korea,, April 14-18, 2019.
4. Runciman, M., Darzi, A., Mylonas, G. P., Soft Robotics in Minimally Invasive Surgery. Soft Robot, 2019, 6(4), 423-443.
5. Baer, J. I., MATERIAL HANDLING APPARATUS AND THE LIKE. USA Patent, 1967, 3,343,864.
6. SUZUMORI, K., IIKURA, S., TANAKA, H., Development of Flexible Microactuator and Its Applications to Robotic Mechanisms. Proceedings of the 1991 IEEE International Conference on Robotics and Automation, Sacramento, California, April 1991.
7. Konishi, S., Nokata, M., Jeong, O. C. et al., in Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006. (IEEE, 2006), pp. 1036-1041.
8. Shepherd, R. F., Ilievski, F., Choi, W. et al., Multigait soft robot. Proc Natl Acad Sci U S A, 2011, 108(51), 20400-20403.
9. Walker, J., Zidek, T., Harbel, C. et al., Soft Robotics: A Review of Recent Developments of Pneumatic Soft Actuators. Actuators, 2020, 9(1).
10. Tai, K., El-Sayed, A.-R., Shahriari, M. et al., State of the Art Robotic Grippers and Applications. Robotics, 2016, 5(2).
11. Hughes, J., Culha, U., Giardina, F. et al., Soft Manipulators and Grippers: A Review. Frontiers in Robotics and AI, 2016, 3.
12. Chen, S., Cao, Y., Sarparast, M. et al., Soft Crawling Robots: Design, Actuation, and Locomotion. Advanced Materials Technologies, 2019, 5(2). 13. Jusufi, A., Vogt, D. M., Wood, R. J. et al., Undulatory Swimming Performance and Body Stiffness Modulation in a Soft Robotic Fish-Inspired Physical Model. Soft Robot, 2017, 4(3), 202-210.
14. Kim, J., Kim, J. W., Kim, H. C. et al., Review of Soft Actuator Materials. International Journal of Precision Engineering and Manufacturing, 2019, 20(12), 2221-2241.
15. Rich, S. I., Wood, R. J., Majidi, C., Untethered soft robotics. Nature Electronics, 2018, 1(2), 102-112.
16. Banerjee, H., Tse, Z. T. H., Ren, H., Soft Robotics with Compliance and Adaptation for Biomedical Applications and Forthcoming Challenges. International Journal of Robotics and Automation, 2018, 33(1).
17. Wehner, M., Truby, R. L., Fitzgerald, D. J. et al., An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature, 2016, 536(7617), 451-455.
18. Hawkes, E. W., Blumenschein, L. H., Greer, J. D. et al., A soft robot that navigates its environment through growth. Science Robotics, 2017, 2(8). 19. Cacucciolo, V., Shintake, J., Kuwajima, Y. et al., Stretchable pumps for soft machines. Nature, 2019, 572(7770), 516-519.
20. Gorissen, B., Melancon, D., Vasios, N. et al., Inflatable soft jumper inspired by shell snapping. Sci Robot, 2020, 5(42).
21. Li, G., Chen, X., Zhou, F. et al., Self-powered soft robot in the Mariana Trench. Nature, 2021, 591(7848), 66-71.
22. Whitesides, G. M., Soft Robotics. Angew Chem Int Ed Engl, 2018, 57(16), 4258-4273.
23. Rus, D., Tolley, M. T., Design, fabrication and control of soft robots. Nature, 2015, 521(7553), 467-475.
24. De Greef, A., Lambert, P., Delchambre, A., Towards flexible medical instruments: Review of flexible fluidic actuators. Precision Engineering, 2009, 33(4), 311-321.
25. Gu, G.-Y., Zhu, J., Zhu, L.-M. et al., A survey on dielectric elastomer actuators for soft robots. Bioinspiration & biomimetics, 2017, 12(1), 011003.
26. Godaba, H., Li, J., Wang, Y. et al., A Soft Jellyfish Robot Driven by a Dielectric Elastomer Actuator. IEEE Robotics and Automation Letters, 2016, 1(2), 624-631.
27. Guo, Y., Liu, L., Liu, Y. et al., Antagonistic cone dielectric elastomer actuator: Analysis, experiment and application. Extreme Mechanics Letters, 2021, 42.
28. Zhang, Z., Wang, X., Tan, S. et al., Superior electrostrictive strain achieved under low electric fields in relaxor ferroelectric polymers. Journal of Materials Chemistry A, 2019, 7(10), 5201-5208.
29. Xiao, Y. Y., Jiang, Z. C., Tong, X. et al., Biomimetic locomotion of electrically powered “Janus” soft robots using a liquid crystal polymer. Advanced Materials, 2019, 31(36), 1903452.
30. Li, J., Liu, L., Liu, Y. et al., Dielectric Elastomer Spring-Roll Bending Actuators: Applications in Soft Robotics and Design. Soft Robot, 2019, 6(1), 69-81.
31. Maeda, K., Shinoda, H., Tsumori, F., Miniaturization of worm-type soft robot actuated by magnetic field. Japanese Journal of Applied Physics, 2020, 59(SI).
32. Jang, S. H., Na, S. H., Park, Y. L., Magnetically Assisted Bilayer Composites for Soft Bending Actuators. Materials (Basel), 2017, 10(6).
33. McDonald, K., Rendos, A., Woodman, S. et al., Magnetorheological Fluid‐Based Flow Control for Soft Robots. Advanced Intelligent Systems, 2020, 2(11).
34. Wang, X., Zhang, Q., Liu, P. et al., An ultrafast response and precisely controllable soft electromagnet actuator based on Ecoflex rubber film filled with neodymium-iron-boron. Journal of Micromechanics and Microengineering, 2021, 31(2).
35. Sun, L., Zheng, Y., Bio-inspired artificial cilia with magnetic dynamic properties. Frontiers of Materials Science, 2015, 9(2), 178-184.
36. He, Q., Wang, Z., Wang, Y. et al., Recyclable and Self-Repairable Fluid-Driven Liquid Crystal Elastomer Actuator. ACS Appl Mater Interfaces, 2020, 12(31), 35464-35474.
37. Dong, L., Zhao, Y., Photothermally driven liquid crystal polymer actuators. Materials Chemistry Frontiers, 2018, 2(11), 1932-1943.
38. Stoychev, G., Puretskiy, N., Ionov, L., Self-folding all-polymer thermoresponsive microcapsules. Soft Matter, 2011, 7(7), 3277-3279.
39. Lendlein, A., Langer, R., Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science, 2002, 296(5573), 1673-1676.
40. Ware, T. H., McConney, M. E., Wie, J. J. et al., Voxelated liquid crystal elastomers. Science, 2015, 347(6225), 982-984.
41. Zhu, P., Chen, R., Zhou, C. et al., Bioinspired Soft Microactuators. Adv Mater, 2021, 33(21), e2008558.
42. Chen, J.-K., Chang, C.-J., Fabrications and applications of stimulus-responsive polymer films and patterns on surfaces: A review. Materials, 2014, 7(2), 805-875.
43. Zhao, Q., Dunlop, J. W., Qiu, X. et al., An instant multi-responsive porous polymer actuator driven by solvent molecule sorption. Nat Commun, 2014, 5, 4293.
44. Yang, Y., Wu, Y., Li, C. et al., Flexible Actuators for Soft Robotics. Advanced Intelligent Systems, 2019, 2(1).
45. Rogóż, M., Zeng, H., Xuan, C. et al., Light-Driven Soft Robot Mimics Caterpillar Locomotion in Natural Scale. Advanced Optical Materials, 2016, 4(11), 1689-1694.
46. Yang, Y., Zhang, M., Li, D. et al., Graphene-Based Light-Driven Soft Robot with Snake-Inspired Concertina and Serpentine Locomotion. Advanced Materials Technologies, 2019, 4(1).
47. Marchese, A. D., Massachusetts Institute of Technology, (2015).
48. Polygerinos, P., Correll, N., Morin, S. A. et al., Soft robotics: Review of fluid‐driven intrinsically soft devices; manufacturing, sensing, control, and applications in human‐robot interaction. Advanced Engineering Materials, 2017, 19(12), 1700016.
49. Kofod, G., Wirges, W., Paajanen, M. et al., Energy minimization for self-organized structure formation and actuation. Applied Physics Letters, 2007, 90(8), 081916.
50. Jeon, S., Hoshiar, A. K., Kim, K. et al., A Magnetically Controlled Soft Microrobot Steering a Guidewire in a Three-Dimensional Phantom Vascular Network. Soft Robot, 2019, 6(1), 54-68.
51. Stoychev, G., Puretskiy, N., Ionov, L., Self-folding all-polymer thermoresponsive microcapsules. Soft Matter, 2011, 7(7).
52. Zeng, H., Wani, O. M., Wasylczyk, P. et al., Light-Driven, Caterpillar-Inspired Miniature Inching Robot. Macromol Rapid Commun, 2018, 39(1). 53. Sinatra, N. R., Teeple, C. B., Vogt, D. M. et al., Ultragentle manipulation of delicate structures using a soft robotic gripper. Science Robotics, 2019, 4(33).
54. Rus, D., Tolley, M. T., Design, fabrication and control of origami robots. Nature Reviews Materials, 2018, 3(6), 101-112.
55. Giannaccini, M. E., Xiang, C., Atyabi, A. et al., Novel Design of a Soft Lightweight Pneumatic Continuum Robot Arm with Decoupled Variable Stiffness and Positioning. Soft Robot, 2018, 5(1), 54-70.
56. Xavier, M. S., Fleming, A. J., Yong, Y. K., Finite Element Modeling of Soft Fluidic Actuators: Overview and Recent Developments. Advanced Intelligent Systems, 2021, 3(2), 2000187.
57. Zhou, L. Y., Fu, J., He, Y., A Review of 3D Printing Technologies for Soft Polymer Materials. Advanced Functional Materials, 2020, 30(28).
58. Abbasi, P., Nekoui, M. A., Zareinejad, M. et al., Position and Force Control of a Soft Pneumatic Actuator. Soft Robot, 2020, 7(5), 550-563.
59. Hu, X., Chen, A., Luo, Y. et al., Steerable catheters for minimally invasive surgery: a review and future directions. Comput Assist Surg (Abingdon), 2018, 23(1), 21-41.
60. Decroly, G., Mertens, B., Lambert, P. et al., Design, characterization and optimization of a soft fluidic actuator for minimally invasive surgery. Int J Comput Assist Radiol Surg, 2020, 15(2), 333-340.
61. Hines, L., Petersen, K., Lum, G. Z. et al., Soft Actuators for Small-Scale Robotics. Adv Mater, 2017, 29(13).
62. Oh, N., Park, Y. J., Lee, S. et al., Design of Paired Pouch Motors for Robotic Applications. Advanced Materials Technologies, 2019, 4(1).
63. Wehner, M., Tolley, M. T., Mengüç, Y. et al., Pneumatic Energy Sources for Autonomous and Wearable Soft Robotics. Soft Robotics, 2014, 1(4), 263-274.
64. Onal, C. D., Rus, D., Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot. Bioinspiration & Biomimetics, 2013, 8(2).
65. Lazeroms, M., La Haye, A., Sjoerdsma, W. et al., A hydraulic forceps with force-feedback for use in minimally invasive surgery. Mechatronics, 1996, 6(4), 437-446.
66. NASALangleyResearchCenter, Life at the Lab: Soft Robots. 2019.
67. Kalisky, T., Wang, Y., Shih, B. et al., Differential pressure control of 3D printed soft fluidic actuators. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017.
68. Ogden, S., Klintberg, L., Thornell, G. et al., Review on miniaturized paraffin phase change actuators, valves, and pumps. Microfluidics and Nanofluidics, 2013, 17(1), 53-71.
69. Meder, F., Naselli, G. A., Sadeghi, A. et al., Remotely Light-Powered Soft Fluidic Actuators Based on Plasmonic-Driven Phase Transitions in Elastic Constraint. Adv Mater, 2019, 31(51), e1905671.
70. Lee, H. J., Prachaseree, P., Loh, K. J., Rapid Soft Material Actuation Through Droplet Evaporation. Soft Robot, 2020.
71. Narumi, K., Sato, H., Nakahara, K. et al., Liquid Pouch Motors: Printable Planar Actuators Driven by Liquid-to-Gas Phase Change for Shape-Changing Interfaces. IEEE Robotics and Automation Letters, 2020, 5(3), 3915-3922.
72. Chellattoan, R., Yudhanto, A., Lubineau, G., Low-Voltage-Driven Large-Amplitude Soft Actuators Based on Phase Transition. Soft Robot, 2020, 7(6), 688-699.
73. Ueno, S., Monnai, Y., Wireless Soft Actuator Based on Liquid-Gas Phase Transition Controlled by Millimeter-Wave Irradiation. IEEE Robotics and Automation Letters, 2020, 5(4), 6483-6488.
74. Boyvat, M., Vogt, D. M., Wood, R. J., Ultrastrong and High-Stroke Wireless Soft Actuators through Liquid-Gas Phase Change. Advanced Materials Technologies, 2019, 4(2).
75. Miriyev, A., Stack, K., Lipson, H., Soft material for soft actuators. Nat Commun, 2017, 8(1), 596.
76. Garrad, M., Soter, G., Conn, A. T. et al., Driving soft robots with low-boiling point fluids. 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft), 2019.
77. Adami, M., Seibel, A., On-Board Pneumatic Pressure Generation Methods for Soft Robotics Applications. Actuators, 2018, 8(1).
78. Shepherd, R. F., Stokes, A. A., Freake, J. et al., Using Explosions to Power a Soft Robot. Angewandte Chemie, 2013, 125(10), 2964-2968.
79. Tolley, M. T., Shepherd, R. F., Karpelson, M. et al., An untethered jumping soft robot. 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014.
80. Desbiens, A. B., Bigue, J. L., Veronneau, C. et al., On the Potential of Hydrogen-Powered Hydraulic Pumps for Soft Robotics. Soft Robot, 2017, 4(4), 367-378.
81. Loepfe, M., Schumacher, C. M., Lustenberger, U. B. et al., An Untethered, Jumping Roly-Poly Soft Robot Driven by Combustion. Soft Robotics, 2015, 2(1), 33-41.
82. Schumacher, C. M., Loepfe, M., Fuhrer, R. et al., 3D printed lost-wax casted soft silicone monoblocks enable heart-inspired pumping by internal combustion. RSC Adv., 2014, 4(31), 16039-16042.
83. Okui, M., Nagura, Y., Iikawa, S. et al., in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). (IEEE, 2017), pp. 1040-1045.
84. Kitamori, T., Wada, A., Nabae, H. et al., Untethered three-arm pneumatic robot using hose-free pneumatic actuator. 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016. 85. Ino, S., Sato, M., Hosono, M. et al., Development of a soft metal hydride actuator using a laminate bellows for rehabilitation systems. Sensors and Actuators B: Chemical, 2009, 136(1), 86-91.
86. Norton, A. A., Minor, M. A., Pneumatic Microactuator Powered by the Deflagration of Sodium Azide. Journal of Microelectromechanical Systems, 2006, 15(2), 344-354.
87. Loepfe, M., Schumacher, C. M., Stark, W. J., Design, Performance and Reinforcement of Bearing-Free Soft Silicone Combustion-Driven Pumps. Industrial & Engineering Chemistry Research, 2014, 53(31), 12519-12526. 88. Katzschmann, R. K., De Maille, A., Dorhout, D. L. et al., in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). (IEEE, 2016), pp. 3048-3055.
89. Padovani, D., Barth, E. J., in 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft). (IEEE, 2020), pp. 345-350.
90. MacCurdy, R., Katzschmann, R., Kim, Y. et al., in 2016 IEEE International Conference on Robotics and Automation (ICRA). (IEEE, 2016), pp. 3878-3885.
91. Gim, J., Ahn, C., Design and Analysis of Osmosis-based Artificial Muscle. Journal of Bionic Engineering, 2019, 16(1), 56-65.
92. Sritharan, D., Smela, E., Fabrication of a Miniature Paper-Based Electroosmotic Actuator. Polymers (Basel), 2016, 8(11).
93. Chuan-Hua, C., Santiago, J. G., A planar electroosmotic micropump. Journal of Microelectromechanical Systems, 2002, 11(6), 672-683.
94. Hsu, H., Liu, L.-Y., Liu, L.-Y. et al., 3D manufactured, water-powered soft actuators for orthodontic application. Smart Materials and Structures, 2018, 27(8).
95. Follador, M., Tramacere, F., Mazzolai, B., Dielectric elastomer actuators for octopus inspired suction cups. Bioinspir Biomim, 2014, 9(4), 046002. 96. Mohd Ghazali, F. A., Mah, C. K., AbuZaiter, A. et al., Soft dielectric elastomer actuator micropump. Sensors and Actuators A: Physical, 2017, 263, 276-284.
97. Zhang, M., Li, G., Yang, X. et al., Artificial muscle driven soft hydraulic robot: electromechanical actuation and simplified modeling. Smart Materials and Structures, 2018, 27(9).
98. Loverich, J. J., Kanno, I., Kotera, H., Concepts for a new class of all-polymer micropumps. Lab Chip, 2006, 6(9), 1147-1154.
99. Bar-Cohen, Y., Bowers, A. E., Carpi, F. et al., Dielectric elastomer pump for artificial organisms. Electroactive Polymer Actuators and Devices (EAPAD) 2011, 2011.
100. Bar-Cohen, Y., Tolley, M. T., Goldberg, N. N. et al., Elastomeric diaphragm pump driven by fluid electrode dielectric elastomer actuators (FEDEAs). Electroactive Polymer Actuators and Devices (EAPAD) XX, 2018. 101. Ho, S., Banerjee, H., Foo, Y. Y. et al., Experimental characterization of a dielectric elastomer fluid pump and optimizing performance via composite materials. Journal of Intelligent Material Systems and Structures, 2017, 28(20), 3054-3065.
102. Mao, G., Wu, L., Fu, Y. et al., Design and Characterization of a Soft Dielectric Elastomer Peristaltic Pump Driven by Electromechanical Load. IEEE/ASME Transactions on Mechatronics, 2018, 23(5), 2132-2143.
103. Bar-Cohen, Y., Xie, Q., Lu, B. et al., Molecular machine: how ferroelectric polymers generate giant electroactuation. Electroactive Polymer Actuators and Devices (EAPAD) XX, 2018.
104. Sideris, E. A., de Lange, H. C., Hunt, A., An Ionic Polymer Metal Composite (IPMC)-Driven Linear Peristaltic Microfluidic Pump. IEEE Robotics and Automation Letters, 2020, 5(4), 6788-6795.
105. Zhong, Y., Filippini, D., Jager, E. W. H., A Versatile Flexible Polymer Actuator System for Pumps, Valves, and Injectors Enabling Fully Disposable Active Microfluidics. Advanced Materials Technologies, 2020, 6(1).
106. Fang, Y., Tan, X., A novel diaphragm micropump actuated by conjugated polymer petals: Fabrication, modeling, and experimental results. Sensors and Actuators A: Physical, 2010, 158(1), 121-131.
107. Pawinanto, R. E., Yunas, J., Alwani, A. et al., Electromagnetic Micro-Actuator with Silicon Membrane for Fluids Pump in Drug Delivery System. International Journal of Mechanical Engineering and Robotics Research, 2019, 576-579.
108. Pan, T., McDonald, S. J., Kai, E. M. et al., A magnetically driven PDMS micropump with ball check-valves. Journal of Micromechanics and Microengineering, 2005, 15(5), 1021-1026.
109. Cao, C., Gao, X., Conn, A. T., A Magnetically Coupled Dielectric Elastomer Pump for Soft Robotics. Advanced Materials Technologies, 2019, 4(8).
110. Fuhrer, R., Schumacher, C. M., Zeltner, M. et al., Soft Iron/Silicon Composite Tubes for Magnetic Peristaltic Pumping: Frequency-Dependent Pressure and Volume Flow. Advanced Functional Materials, 2013, 23(31), 3845-3849.
111. Mohd Said, M., Yunas, J., Bais, B. et al., The Design, Fabrication, and Testing of an Electromagnetic Micropump with a Matrix-Patterned Magnetic Polymer Composite Actuator Membrane. Micromachines (Basel), 2017, 9(1).
112. Kuwajima, Y., Shigemune, H., Cacucciolo, V. et al., in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). (IEEE, 2017), pp. 470-475.
113. Friend, J., Tan, H. H., Ueno, S. et al., Micro flexible robot hand using electro-conjugate fluid. Micro/Nano Materials, Devices, and Systems, 2013.
114. Mao, Z., Nagaoka, T., Yokota, S. et al., Soft fiber-reinforced bending finger with three chambers actuated by ECF (electro-conjugate fluid) pumps. Sensors and Actuators A: Physical, 2020, 310.
115. Lin, P. W., Liu, C. H., Bio-Inspired Soft Proboscis Actuator Driven by Dielectric Elastomer Fluid Transducers. Polymers (Basel), 2019, 11(1).
116. Wang, X., Mitchell, S. K., Rumley, E. H. et al., High‐Strain Peano‐HASEL Actuators. Advanced Functional Materials, 2019, 30(7).
117. Diteesawat, R., Helps, T., Taghavi, M. et al., Electro-pneumatic pumps for soft robotics. Sci. Robot., 2021, 6, eabc3721.
118. Yokota, S., Micro Actuators by Making Use of Jet Flows Due to Electro-Conjugate Fluid#. Mechanics Based Design of Structures and Machines, 2008, 36(4), 330-345.
119. Sîrbu, I., Moretti, G., Bortolotti, G. et al., Electrostatic bellow muscle actuators and energy harvesters that stack up. Science Robotics, 2021, 6(51).
120. Kim, Y., Cha, Y., Soft Pneumatic Gripper With a Tendon-Driven Soft Origami Pump. Front Bioeng Biotechnol, 2020, 8, 461.
121. Ahn, S., Jung, W., Ko, K. et al., Thermopneumatic Soft Micro Bellows Actuator for Standalone Operation. Micromachines (Basel), 2021, 12(1). 122. Esser, F., Krüger, F., Masselter, T. et al., Development and characterization of a novel biomimetic peristaltic pumping system with flexible silicone-based soft robotic ring actuators. Conference on Biomimetic and Biohybrid Systems, 2018.
123. Arakawa, K., Giorgio-Serchi, F., Mochiyama, H., Snap Pump: A Snap-Through Mechanism for a Pulsatile Pump. IEEE Robotics and Automation Letters, 2021, 6(2), 803-810.
124. Li, Y., Ren, T., Chen, Y. et al., Untethered Multimode Fluidic Actuation: A New Approach to Soft and Compliant Robotics. Soft Robot, 2021, 8(1), 71-84.
125. Tse, Y. A., Wong, K. W., Yang, Y. et al., in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). (IEEE, 2021), pp. 8789-8794.
126. Lakhtakia, A., Knez, M., Martín-Palma, R. J. et al., Artificial heart for humanoid robot using coiled SMA actuators. Bioinspiration, Biomimetics, and Bioreplication 2015, 2015.
127. Asadi Dereshgi, H., Dal, H., Yildiz, M. Z., Piezoelectric micropumps: state of the art review. Microsystem Technologies, 2021.
128. Li, Y., Chen, Y., Ren, T. et al., A Dual-Mode Actuator for Soft Robotic Hand. IEEE Robotics and Automation Letters, 2021, 6(2), 1144-1151.
129. Kohll, A. X., Cohrs, N. H., Walker, R. et al., Long-Term Performance of a Pneumatically Actuated Soft Pump Manufactured by Rubber Compression Molding. Soft Robot, 2019, 6(2), 206-213.
130. Suzumori, K., Iikura, S., Tanaka, H., Flexible microactuator for miniature robots.[1991] Proceedings. IEEE Micro Electro Mechanical Systems, 1991.
131. Milana, E., Bellotti, M., Gorissen, B. et al., Precise bonding-free micromoulding of miniaturized elastic inflatable actuators. 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft), 2019.
132. Watanabe, Y., Maeda, M., Yaji, N. et al., Small, soft, and safe microactuator for retinal pigment epithelium transplantation. 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS), 137 2007.
133. Kang, H.-W., Lee, I. H., Cho, D.-W., Development of a micro-bellows actuator using micro-stereolithography technology. Microelectronic Engineering, 2006, 83(4-9), 1201-1204.
134. Gorissen, B., Vincentie, W., Al-Bender, F. et al., Modeling and bonding-free fabrication of flexible fluidic microactuators with a bending motion. Journal of Micromechanics and Microengineering, 2013, 23(4). 135. Becker, K. P., Chen, Y., Wood, R. J., Mechanically Programmable Dip Molding of High Aspect Ratio Soft Actuator Arrays. Advanced Functional Materials, 2020, 30(12).
136. Paek, J., Cho, I., Kim, J., Microrobotic tentacles with spiral bending capability based on shape-engineered elastomeric microtubes. Sci Rep, 2015, 5, 10768.
137. Gorissen, B., de Volder, M., Reynaerts, D., Pneumatically-actuated artificial cilia array for biomimetic fluid propulsion. Lab Chip, 2015, 15(22), 4348-4355.
138. Milana, E., Bellotti, M., Gorissen, B. et al., Shaping Soft Robotic Microactuators by Wire Electrical Discharge Grinding. Micromachines (Basel), 2020, 11(7).
139. Dahlberg, T., Stangner, T., Zhang, H. et al., 3D printed water-soluble scaffolds for rapid production of PDMS micro-fluidic flow chambers. Sci Rep, 2018, 8(1), 3372.
140. Jung, W., Kang, Y., Han, S. et al., Biocompatible micro, soft bellow actuator rapidly manufactured using 3D-printed soluble mold. Journal of Micromechanics and Microengineering, 2019, 29(12).
141. Rehman, T., Nafea, M., Faudzi, A. A. et al., PDMS-based dual-channel pneumatic micro-actuator. Smart Materials and Structures, 2019, 28(11). 142. Ikeuchi, M., Ikuta, K., “Membrane micro emboss following excimer laser ablation (MeME-X) process” for pressure-driven micro active catheter. 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems, 2008.
143. Sun, Y., Song, S., Liang, X. et al., A Miniature Soft Robotic Manipulator Based on Novel Fabrication Methods. IEEE Robotics and Automation Letters, 2016, 1(2), 617-623.
144. Xia, Y., Whitesides, G. M., Soft lithography. Annual review of materials science, 1998, 28(1), 153-184.
145. Gorissen, B., Chishiro, T., Shimomura, S. et al., Flexible pneumatic twisting actuators and their application to tilting micromirrors. Sensors and Actuators A: Physical, 2014, 216, 426-431.
146. Miyoshi, T., Yoshida, K., Kim, J.-w. et al., An MEMS-based 138 multiple electro-rheological bending actuator system with an alternating pressure source. Sensors and Actuators A: Physical, 2016, 245, 68-75.
147. Ranzani, T., Russo, S., Bartlett, N. W. et al., Increasing the Dimensionality of Soft Microstructures through Injection-Induced Self-Folding. Adv Mater, 2018, 30(38), e1802739.
148. Lu, Y., Kim, C.-J., Micro-finger articulation by pneumatic parylene balloons. TRANSDUCERS'03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No. 03TH8664), 2003.
149. Gorissen, B., Van Hoof, C., Reynaerts, D. et al., SU8 etch mask for patterning PDMS and its application to flexible fluidic microactuators. Microsyst Nanoeng, 2016, 2, 16045.
150. Zhang, Y. F., Ng, C. J. X., Chen, Z. et al., Miniature Pneumatic Actuators for Soft Robots by High‐Resolution Multimaterial 3D Printing. Advanced Materials Technologies, 2019, 4(10).
151. Otake, S., Konishi, S., Integration of flexible strain sensor using liquid metal into soft micro-actuator. 2018 IEEE Micro Electro Mechanical Systems (MEMS), 2018.
152. Yoshioka, R., Wakimoto, S., Suzumori, K. et al., Development of pneumatic rubber actuator of 400μm in diameter generating bi-directional bending motion. 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014), 2014.
153. Hwang, Y., Paydar, O. H., Candler, R. N., Pneumatic microfinger with balloon fins for linear motion using 3D printed molds. Sensors and Actuators A: Physical, 2015, 234, 65-71.
154. Ma, Z., Wang, A., Deng, M., Robust dexterous manipulation of a soft micro-hand. 2016 12th World Congress on Intelligent Control and Automation (WCICA), 2016.
155. Konishi, S., Oya, F., Morphological Transformation between Flat and Tube Structures by Coordinated Motions of Soft Pneumatic Microactuators. Sci Rep, 2019, 9(1), 14483.
156. Konishi, S., Otake, S., Kosawa, H. et al., The Combination of Soft Microfingers and Wearable Interface Device for Haptic Teleoperation Robot System. 2019 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), 2019.
157. Konishi, S., Shimomura, S., Tajima, S. et al., Implementation of soft microfingers for a hMSC aggregate manipulation system. Microsyst Nanoeng, 2016, 2, 15048.
158. Liang, X., Sun, Y., Ren, H., A Flexible Fabrication Approach Toward the Shape Engineering of Microscale Soft Pneumatic Actuators. IEEE Robotics and Automation Letters, 2017, 2(1), 165-170.
159. B.Gorissen, Donose, R., Reynaerts, D. et al., Flexible pneumatic micro-actuators: analysis and production. Procedia Engineering, 2011, 25, 681-684.
160. Branyan, C., Menguc, Y., Soft Snake Robots: Investigating the Effects of Gait Parameters on Locomotion in Complex Terrains. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018. 161. Shintake, J., Rosset, S., Schubert, B. et al., Versatile Soft Grippers with Intrinsic Electroadhesion Based on Multifunctional Polymer Actuators. Adv Mater, 2016, 28(2), 231-238.
162. Polygerinos, P., Wang, Z., Galloway, K. C. et al., Soft robotic glove for combined assistance and at-home rehabilitation. Robotics and Autonomous Systems, 2015, 73, 135-143.
163. Whitesides, G. M., Soft robotics. Angewandte Chemie International Edition, 2018, 57(16), 4258-4273.
164. Kurumaya, S., Nabae, H., Endo, G. et al., Exoskeleton inflatable robotic arm with thin McKibben muscle. 2018 IEEE International Conference on Soft Robotics (RoboSoft), 2018.
165. Shepherd, R. F., Ilievski, F., Choi, W. et al., Multigait soft robot. Proceedings of the national academy of sciences, 2011, 108(51), 20400-20403.
166. Peng, Q., Wei, H., Qin, Y. et al., Shape-memory polymer nanocomposites with a 3D conductive network for bidirectional actuation and locomotion application. Nanoscale, 2016, 8(42), 18042-18049.
167. Yuk, H., Lin, S., Ma, C. et al., Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nat Commun, 2017, 8, 14230.
168. Kurumaya, S., Phillips, B. T., Becker, K. P. et al., A Modular Soft Robotic Wrist for Underwater Manipulation. Soft Robot, 2018, 5(4), 399-409.
169. Duduta, M., Clarke, D. R., Wood, R. J., A high speed soft robot based on dielectric elastomer actuators. 2017 IEEE International Conference on Robotics and Automation (ICRA), 2017.
170. Ijaz, S., Li, H., Hoang, M. C. et al., Magnetically actuated miniature walking soft robot based on chained magnetic microparticles-embedded elastomer. Sensors and Actuators A: Physical, 2020, 301, 111707.
171. White, T. J., Ware, T. H., Mcconney, M. E. et al., Voxelated liquid crystal elastomers. 2016.
172. De Volder, M., Reynaerts, D., Pneumatic and hydraulic microactuators: a review. Journal of Micromechanics and Microengineering, 2010, 20(4).
173. Gorissen, B., Reynaerts, D., Konishi, S. et al., Elastic Inflatable Actuators for Soft Robotic Applications. Adv Mater, 2017, 29(43). 140
174. Tolley, M. T., Shepherd, R. F., Mosadegh, B. et al., A Resilient, Untethered Soft Robot. Soft Robotics, 2014, 1(3), 213-223.
175. Lindenroth, L., Soor, A., Hutchinson, J. et al., Design of a soft, parallel end-effector applied to robot-guided ultrasound interventions. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017.
176. Ando Junior, O., Coelho, M., Malfatti, C. et al., in International Conference on Renewable Energies and Power Quality. (2014), pp. 08-10.04.
177. Linnemann, R., Woias, P., Senfft, C.-D. et al., in Proceedings MEMS 98. IEEE. Eleventh Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (Cat. No. 98CH36176. (IEEE, 1998), pp. 532-537.
178. Horrocks, A. R., Anand, S. C., Handbook of technical textiles. (Elsevier, 2000).
179. Mohith, S., Karanth, P. N., Kulkarni, S. M., Recent trends in mechanical micropumps and their applications: A review. Mechatronics, 2019, 60, 34-55.
180. Benaissa, A., Belkhiat, S., Performances analysis of a piezo-pump. EPJ Web of Conferences, 2012, 29.
181. Linnemann, R., Woias, P., Senfft, C.-D. et al., A self-priming and bubble-tolerant piezoelectric silicon micropump for liquids and gases. Proceedings MEMS 98. IEEE. Eleventh Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (Cat. No. 98CH36176, 1998. 182. Mosadegh, B., Polygerinos, P., Keplinger, C. et al., Pneumatic Networks for Soft Robotics that Actuate Rapidly. Advanced Functional Materials, 2014, 24(15), 2163-2170.
183. Hawkes, E. W., Majidi, C., Tolley, M. T., Hard questions for soft robotics. Science robotics, 2021, 6(53), eabg6049.
184. Al-Fahaam, H., Davis, S., Nefti-Meziani, S., The design and mathematical modelling of novel extensor bending pneumatic artificial muscles (EBPAMs) for soft exoskeletons. Robotics and Autonomous Systems, 2018, 99, 63-74.
185. Gopesh, T., Wen, J. H., Santiago-Dieppa, D. et al., Soft robotic steerable microcatheter for the endovascular treatment of cerebral disorders. Science Robotics, 2021, 6(57), eabf0601.
186. Gorissen, B., De Volder, M., Reynaerts, D., Chip-on-tip endoscope incorporating a soft robotic pneumatic bending microactuator. Biomed Microdevices, 2018, 20(3), 73.
187. Yang, Y., Wu, Y., Li, C. et al., Flexible actuators for soft robotics. Advanced Intelligent Systems, 2020, 2(1), 1900077.
188. Hines, L., Petersen, K., Sitti, M., Inflated Soft Actuators with Reversible Stable Deformations. Adv Mater, 2016, 28(19), 3690-3696.
189. Yoshioka, R., Wakimoto, S., Suzumori, K. et al., in 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014). (IEEE, 2014), pp. 1-6.
190. Konishi, S., Mori, F., Shimizu, A. et al., Structural Reinforcement Effect of a Flexible Strain Sensor Integrated with Pneumatic Balloon Actuators for Soft Microrobot Fingers. Micromachines (Basel), 2021, 12(4).
191. Yong-Lae, P., Bor-Rong, C., Wood, R. J., Design and Fabrication of Soft Artificial Skin Using Embedded Microchannels and Liquid Conductors. IEEE Sensors Journal, 2012, 12(8), 2711-2718.
192. Gul, J. Z., Sajid, M., Rehman, M. M. et al., 3D printing for soft robotics–a review. Science and technology of advanced materials, 2018, 19(1), 243-262.
193. Gere, J. M., Timoshenko, S. P., Mechanics of Materials. (Mechanics of Material, 1997).
修改评论