题名 | Noise enhanced neural networks for analytic continuation |
作者 | |
通讯作者 | Zhai, Hui |
发表日期 | 2022-06-01
|
DOI | |
发表期刊 | |
EISSN | 2632-2153
|
卷号 | 3期号:2 |
摘要 | Analytic continuation maps imaginary-time Green's functions obtained by various theoretical/numerical methods to real-time response functions that can be directly compared with experiments. Analytic continuation is an important bridge between many-body theories and experiments but is also a challenging problem because such mappings are ill-conditioned. In this work, we develop a neural network (NN)-based method for this problem. The training data is generated either using synthetic Gaussian-type spectral functions or from exactly solvable models where the analytic continuation can be obtained analytically. Then, we applied the trained NN to the testing data, either with synthetic noise or intrinsic noise in Monte Carlo simulations. We conclude that the best performance is always achieved when a proper amount of noise is added to the training data. Moreover, our method can successfully capture multi-peak structure in the resulting response function for the cases with the best performance. The method can be combined with Monte Carlo simulations to compare with experiments on real-time dynamics. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
|
资助项目 | NSFC[11904190,11734010]
|
WOS研究方向 | Computer Science
; Science & Technology - Other Topics
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Interdisciplinary Applications
; Multidisciplinary Sciences
|
WOS记录号 | WOS:000800360200001
|
出版者 | |
EI入藏号 | 20222412207487
|
EI主题词 | Intelligent Systems
; Machine Learning
; Monte Carlo Methods
|
EI分类号 | Artificial Intelligence:723.4
; Mathematics:921
; Mathematical Statistics:922.2
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:5
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/335395 |
专题 | 量子科学与工程研究院 |
作者单位 | 1.Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China 2.Int Quantum Acad, Shenzhen 518048, Peoples R China 3.Southern Univ Sci & Technol, Guangdong Prov Key Lab Quantum Sci & Engn, Shenzhen 518055, Peoples R China 4.Tsinghua Univ, Inst Adv Study, Beijing 100084, Peoples R China |
第一作者单位 | 量子科学与工程研究院 |
第一作者的第一单位 | 量子科学与工程研究院 |
推荐引用方式 GB/T 7714 |
Yao, Juan,Wang, Ce,Yao, Zhiyuan,et al. Noise enhanced neural networks for analytic continuation[J]. MACHINE LEARNING-SCIENCE AND TECHNOLOGY,2022,3(2).
|
APA |
Yao, Juan,Wang, Ce,Yao, Zhiyuan,&Zhai, Hui.(2022).Noise enhanced neural networks for analytic continuation.MACHINE LEARNING-SCIENCE AND TECHNOLOGY,3(2).
|
MLA |
Yao, Juan,et al."Noise enhanced neural networks for analytic continuation".MACHINE LEARNING-SCIENCE AND TECHNOLOGY 3.2(2022).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Yao et al. - 2022 - (472KB) | -- | -- | 开放获取 | -- | 浏览 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论