中文版 | English
题名

Noise enhanced neural networks for analytic continuation

作者
通讯作者Zhai, Hui
发表日期
2022-06-01
DOI
发表期刊
EISSN
2632-2153
卷号3期号:2
摘要

Analytic continuation maps imaginary-time Green's functions obtained by various theoretical/numerical methods to real-time response functions that can be directly compared with experiments. Analytic continuation is an important bridge between many-body theories and experiments but is also a challenging problem because such mappings are ill-conditioned. In this work, we develop a neural network (NN)-based method for this problem. The training data is generated either using synthetic Gaussian-type spectral functions or from exactly solvable models where the analytic continuation can be obtained analytically. Then, we applied the trained NN to the testing data, either with synthetic noise or intrinsic noise in Monte Carlo simulations. We conclude that the best performance is always achieved when a proper amount of noise is added to the training data. Moreover, our method can successfully capture multi-peak structure in the resulting response function for the cases with the best performance. The method can be combined with Monte Carlo simulations to compare with experiments on real-time dynamics.

关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一
资助项目
NSFC[11904190,11734010]
WOS研究方向
Computer Science ; Science & Technology - Other Topics
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Multidisciplinary Sciences
WOS记录号
WOS:000800360200001
出版者
EI入藏号
20222412207487
EI主题词
Intelligent Systems ; Machine Learning ; Monte Carlo Methods
EI分类号
Artificial Intelligence:723.4 ; Mathematics:921 ; Mathematical Statistics:922.2
来源库
Web of Science
引用统计
被引频次[WOS]:5
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/335395
专题量子科学与工程研究院
作者单位
1.Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
2.Int Quantum Acad, Shenzhen 518048, Peoples R China
3.Southern Univ Sci & Technol, Guangdong Prov Key Lab Quantum Sci & Engn, Shenzhen 518055, Peoples R China
4.Tsinghua Univ, Inst Adv Study, Beijing 100084, Peoples R China
第一作者单位量子科学与工程研究院
第一作者的第一单位量子科学与工程研究院
推荐引用方式
GB/T 7714
Yao, Juan,Wang, Ce,Yao, Zhiyuan,et al. Noise enhanced neural networks for analytic continuation[J]. MACHINE LEARNING-SCIENCE AND TECHNOLOGY,2022,3(2).
APA
Yao, Juan,Wang, Ce,Yao, Zhiyuan,&Zhai, Hui.(2022).Noise enhanced neural networks for analytic continuation.MACHINE LEARNING-SCIENCE AND TECHNOLOGY,3(2).
MLA
Yao, Juan,et al."Noise enhanced neural networks for analytic continuation".MACHINE LEARNING-SCIENCE AND TECHNOLOGY 3.2(2022).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Yao et al. - 2022 - (472KB)----开放获取--浏览
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yao, Juan]的文章
[Wang, Ce]的文章
[Yao, Zhiyuan]的文章
百度学术
百度学术中相似的文章
[Yao, Juan]的文章
[Wang, Ce]的文章
[Yao, Zhiyuan]的文章
必应学术
必应学术中相似的文章
[Yao, Juan]的文章
[Wang, Ce]的文章
[Yao, Zhiyuan]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Yao et al. - 2022 - Noise enhanced neural networks for analytic continuation(2).pdf
格式: Adobe PDF
文件名: Yao et al. - 2022 - Noise enhanced neural networks for analytic continuation(2).pdf
格式: Adobe PDF
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。